1
|
Modulation of immune functions, inflammatory response, and cytokine production following long-term oral exposure to three food additives; thiabendazole, monosodium glutamate, and brilliant blue in rats. Int Immunopharmacol 2021; 98:107902. [PMID: 34182247 DOI: 10.1016/j.intimp.2021.107902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The food additives thiabendazole (TBZ), monosodium glutamate (MSG), and brilliant blue (BB) are commonly used in many daily-consumed food products worldwide. They are widely used in major agricultural and industrial applications. Yet, many of its toxicological aspects are still unclear, especially immune modulation. This research was therefore intended to investigate the effects of male Wistar rats' daily oral exposure for 90 days to TBZ (10 mg/kg b.wt), MSG (20 mg/kg b.wt), or BB (1.2 mg/kg b.wt) on the blood cells, immunity, and inflammatory indicators. The three tested food additives showed varying degrees of hematological alterations. Initially, megaloblastic anemia and thrombocytopenia were evident with the three tested food additives. At the same time, TBZ showed no significant changes in the leukogram element except eosinopenia. MSG induced leukopenia, lymphocytopenia, neutrophilia, and eosinophilia. BB evoked neutrophilia and lymphopenia. The immunoglobins M (IgM) and IgG were significantly reduced with the three tested food additives. In contrast, lysozyme and nitric oxide levels were elevated. A reduced considerably lymphocyte proliferation was detected with TBZ and MSG exposure without affecting the phagocytic activity. Various pathologic disturbances in splenic tissues have been detected. An obvious increase in CD4+ but a lessening in CD8+ immunolabeling was evident in TBZ and MSG groups. The cytokines, including interferon-gamma, tumor necrosis factor-alpha, and interleukin 1β, 6, 10, and 13, were significantly upregulated in the spleen of rats exposed to TBZ, MSG, and BB. These results concluded that TBZ, MSG, and BB negatively affect hematological parameters, innate and humoral immune functions together with inflammatory responses. TBZ achieved the maximal negative impacts followed by MSG and finally with BB. Given the prevalence of these food additives, TBZ and MSG should be limited to a minimal volume use, or natural food additives should be used instead.
Collapse
|
2
|
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18:1111-1134. [PMID: 31920467 PMCID: PMC6952072 DOI: 10.1111/1541-4337.12448] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
| | - George M. Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Aris Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
- Metabolomic Medicine Clinic, Athens 10674, Greece
| | - Ayse B. Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara 06330, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10463, USA
| | - Denisa Margină
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
3
|
Abstract
Three alkaloids, aknadinine, 1-nitroaknadinine and sinococuline, isolated from Stephania sutchuenensis were studied for their effects on a fibroblast cell line, eight tumor cell lines and a rat alveolar macrophage culture. Sinococuline is an effective tumor cell growth inhibitor whereas the toxicity of aknadinine and 1-nitroaknadinine towards all tested cells is low. A dose-dependent decrease in cell viability and in the uptake of tritiated-thymidine, -leucine and -uridine by these cells was observed when they were grown in the presence of sinococuline for 24 h. Exposure to sinococuline in vitro also altered the macrophage function by reducing the production of tumor necrosis factor and reactive nitrogen intermediates. Human leukaemic HL60 cells and mouse fibroblast L929 cells were used to study the underlying mechanism of cytotoxicity and apoptosis seem to be the mode of death induced by sinococuline
Collapse
Affiliation(s)
- W K Liu
- Department of Anatomy, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | |
Collapse
|