1
|
Wu KY, Chiang SY, Shih WC, Huang CCJ, Chen MF, Swenberg JA. The application of mass spectrometry in molecular dosimetry: ethylene oxide as an example. MASS SPECTROMETRY REVIEWS 2011; 30:733-756. [PMID: 21328599 DOI: 10.1002/mas.20299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mass spectrometry plays an increasingly important role in the search for and quantification of novel chemically specific biomarkers. The revolutionary advances in mass spectrometry instrumentation and technology empower scientists to specifically analyze DNA and protein adducts, considered as molecular dosimeters, derived from reactions of a carcinogen or its active metabolites with DNA or protein. Analysis of the adducted DNA bases and proteins can elucidate the chemically reactive species of carcinogens in humans and can serve as risk-associated biomarkers for early prediction of cancer risk. In this article, we review and compare the specificity, sensitivity, resolution, and ease-of-use of mass spectrometry methods developed to analyze ethylene oxide (EO)-induced DNA and protein adducts, particularly N7-(2-hydroxyethyl)guanine (N7-HEG) and N-(2-hydroxyethyl)valine (HEV), in human samples and in animal tissues. GC/ECNCI-MS analysis after HPLC cleanup is the most sensitive method for quantification of N7-HEG, but limited by the tedious sample preparation procedures. Excellent sensitivity and specificity in analysis of N7-HEG can be achieved by LC/MS/MS analysis if the mobile phase, the inlet (split or splitless), and the collision energy are properly optimized. GC/ECNCI-HRMS and GC/ECNCI-MS/MS analysis of HEV achieves the best performance as compared with GC/ECNCI-MS and GC/EI-MS. In conclusion, future improvements in high-throughput capabilities, detection sensitivity, and resolution of mass spectrometry will attract more scientists to identify and/or quantify novel molecular dosimeters or profiles of these biomarkers in toxicological and/or epidemiological studies.
Collapse
Affiliation(s)
- Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
2
|
Vodicka PE, Linhart I, Novak J, Koskinen M, Vodickova L, Hemminki K. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation. Toxicol Appl Pharmacol 2005; 210:1-8. [PMID: 15949832 DOI: 10.1016/j.taap.2005.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/13/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7alphaG) and 7-(2-hydroxy-2-phenylethyl)guanine (N7betaG), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32+1.14 and 6.91+1.17 pmol/animal for lower and higher styrene exposure, respectively. beta-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F=13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10(8) normal nucleotides, i.e., 0.74 fmol/microg DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m3, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing alpha-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0x10(-5)% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.
Collapse
Affiliation(s)
- Pavel Erik Vodicka
- Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Videnská 1083, 14 220 Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
3
|
Koskinen M, Vodicková L, Vodicka P, Warner SC, Hemminki K. Kinetics of formation of specific styrene oxide adducts in double-stranded DNA. Chem Biol Interact 2001; 138:111-24. [PMID: 11672695 DOI: 10.1016/s0009-2797(01)00254-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The possible carcinogenicity of styrene is believed to be related to the DNA-binding properties of styrene 7,8-oxide (SO). In order to compare the intrinsic reactivity of the different nucleophilic sites in DNA towards SO and to evaluate the candidates for human biomonitoring we have determined the second-order rate constants and stabilities of several SO-adducts in double-stranded DNA. These include alpha- and beta-isomers of N7-substituted and alphaN(2)-substituted guanines, alpha- and betaN3-substituted and alphaN(6)-substituted adenines as well as betaN3- and alphaN(4)-substituted cytosines. The highest rate constants were found for the spontaneously depurinating N7-guanines being ca. 3-15-fold higher than those for the stable adducts. When the relative proportions of different alkylation products were determined in course of time, after a single addition of SO, the labile N7-guanines and N3-adenines were the major products at early time points. After 144 h of incubation at 37 degrees C, alphaN(6)-SO-adenine and alphaN(2)-SO-guanine as well as betaN3-SO-uracil were the major adducts. Regarding human biomonitoring, the N7-substituted guanines should be one of the main targets because of the high reactivity of the N7-atom of guanine. However, in the case of chronic styrene exposures the chemically more stable DNA adducts may become important.
Collapse
Affiliation(s)
- M Koskinen
- Department of Biosciences at Novum, Karolinska Institute, S-141 57, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
4
|
Koskinen M, Calebiro D, Hemminki K. Styrene oxide-induced 2'-deoxycytidine adducts: implications for the mutagenicity of styrene oxide. Chem Biol Interact 2000; 126:201-13. [PMID: 10862818 DOI: 10.1016/s0009-2797(00)00165-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The reaction between 2'-deoxycytidine and styrene 7,8-oxide (SO) resulted in alkylation at the 3-position and at the O(2)-position through the alpha- and beta-carbons of the epoxide but at the N(4)-position only through the alpha-carbon. The 3-alkylated adducts were found to deaminate to the corresponding 2'-deoxyuridine adducts (37 degrees C, pH 7.4) with half-lives of 6 min and 2.4 h for the alpha- and beta-isomers, respectively. The N(4)-alkylated products were stable at neutral pH. The O(2)-alkylated products were unstable being prone to depyrimidation and to isomerisation between alpha- and beta-isomers. In SO-treated double-stranded DNA, enzymatic hydrolysis allowed the identification of the beta3-deoxyuridine and alphaN(4)-deoxycytidine adducts (1.9 and 0.5% of total alkylation, respectively), in addition to the previously identified DNA-adducts. The 3-substituted uracil may have implications for the mutagenicity of SO.
Collapse
Affiliation(s)
- M Koskinen
- Center for Nutrition and Toxicology, Department of Biosciences at Novum, Karolinska Institute, S-141 57, Huddinge, Sweden.
| | | | | |
Collapse
|
5
|
Segerbäck D, Plná K, Faller T, Kreuzer PE, Hakansson K, Filser JG, Nilsson R. Tissue distribution of DNA adducts in male Fischer rats exposed to 500 ppm of propylene oxide: quantitative analysis of 7-(2-hydroxypropyl)guanine by 32P-postlabelling. Chem Biol Interact 1998; 115:229-46. [PMID: 9851292 DOI: 10.1016/s0009-2797(98)00076-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
7-(2-Hydroxypropyl)guanine (7-HPG) constitutes the major adduct from alkylation of DNA by the genotoxic carcinogen, propylene oxide. The levels of 7-HPG in DNA of various organs provides a relevant measure of tissue dose. 7-Alkylguanines can induce mutation through abasic sites formed from spontaneous depurination of the adduct. In the current study the formation of 7-HPG was investigated in male Fisher 344 rats exposed to 500 ppm of propylene oxide by inhalation for 6 h/day, 5 days/week, for up to 20 days. 7-HPG was analyzed using the 32P-postlabelling assay with anion-exchange cartridges for adduct enrichment. In animals sacrificed directly following 20 days of exposure, the adduct level was highest in the respiratory nasal epithelium (98.1 adducts per 10(6) nucleotides), followed by olfactory nasal epithelium (58.5), lung (16.3), lymphocytes (9.92), spleen (9.26), liver (4.64), and testis (2.95). The nasal cavity is the major target for tumor induction in the rat following inhalation. This finding is consistent with the major difference in adduct levels observed in nasal epithelium compared to other tissues. In rats sacrificed 3 days after cessation of exposure, the levels of 7-HPG in the aforementioned tissues had, on the average, decreased by about one-quarter of their initial concentrations. This degree of loss closely corresponds to the spontaneous rate of depurination for this adduct (t 1/2 = 120 h), and suggests a low efficiency of repair for 7-HPG in the rat. The postlabelling assay used had a detection limit of one to two adducts per 10(8) nucleotides, i.e. it is likely that this adduct could be analyzed in nasal tissues of rats exposed to less than 1 ppm of propylene oxide.
Collapse
Affiliation(s)
- D Segerbäck
- Center for Nutrition and Toxicology, Department of Biosciences, Karolinska Institute, Novum, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
6
|
Hemminki K, Vodicka P. Styrene: from characterisation of DNA adducts to application in styrene-exposed lamination workers. Toxicol Lett 1995; 77:153-61. [PMID: 7618130 DOI: 10.1016/0378-4274(95)03285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Styrene oxide, a metabolite of styrene, reacts with many centres in nucleosides but in DNA N-7-, N2- and O6-guanine are the main sites. A 32P-postlabelling method was developed for the detection of O6-styrene oxide DNA adducts from white blood cells. The method involved use of nuclease P1 and magnet transfer. The O6 adducts were detected at a fmol range with about 10% labelling efficiency. In lamination workers the O6 adducts, adjusted for adduct recovery, were detected at a level of 5 adducts/10(8) nucleotides.
Collapse
Affiliation(s)
- K Hemminki
- Center for Nutrition and Toxicology, Karolinska Institute, Novum, Huddinge, Sweden
| | | |
Collapse
|
7
|
Yu D, Niu TQ, Austin-Ritchie P, Ludlum DB. A 32P-postlabeling method for detecting unstable N-7-substituted deoxyguanosine adducts in DNA. Proc Natl Acad Sci U S A 1994; 91:7232-6. [PMID: 8041772 PMCID: PMC44373 DOI: 10.1073/pnas.91.15.7232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many antitumor agents, including the mustards, form N-7 deoxyguanosine adducts in DNA that are difficult to quantitate by the 32P-postlabeling procedure because of their instability. We have developed a method that is successful for the analysis of such adducts using, as a prototype mustard, 14C-labeled bis(2-chloroethyl)sulfide. This agent forms the unstable product 7-hydroxyethylthioethyldeoxyguanosine in DNA. By performing enzymatic digestions to 3'-deoxynucleotides at 10 degrees C, including a second N-7-substituted guanine deoxynucleotide as an internal standard, removing most of the unmodified nucleotides and [32P]ATP on disposable anion columns, and measuring the labeled products after separation on a C18 column, we are able to detect 1 unstable N-7 deoxyguanosine adduct in 10(7) normal nucleotides with good precision.
Collapse
Affiliation(s)
- D Yu
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
8
|
Phillips DH, Farmer PB. Evidence for DNA and protein binding by styrene and styrene oxide. Crit Rev Toxicol 1994; 24 Suppl:S35-46. [PMID: 7818770 DOI: 10.3109/10408449409020139] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Styrene is metabolized to styrene oxide, a direct-acting mutagen and carcinogen. Styrene oxide reacts with DNA mainly at the N-7 position in guanine, but also at other sites and with other bases. Substitution occurs at both the alpha- and beta-positions of the styrene molecule. Experiments with radiolabeled styrene and styrene oxide demonstrate that both have a low level of DNA binding activity in experimental animals. 32P-Postlabeling studies have demonstrated the potential of the technique to detect styrene-DNA adducts. Styrene oxide alkylates several nucleophilic sites in proteins, particularly cysteine sulfydryl, histidine imidazole, lysine amino, aspartic, and glutamic carboxylic groups, and the N-terminal position. In experimental animals, styrene oxide treatment results in cysteine adducts in hemoglobin and albumin, valine adducts in hemoglobin, and carboxylic acid adducts in hemoglobin. The extent of alkylation is low compared with that produced by ethylene oxide. The available evidence indicates, therefore, that styrene and styrene oxide have low DNA and protein binding activities in vivo. There is preliminary evidence for the presence of DNA adducts and for adducts in hemoglobin and albumin in blood cells of styrene-exposed workers. Nevertheless, the applicability and sensitivity of DNA and protein adduct detection methods for monitoring human exposure to styrene remain to be determined.
Collapse
Affiliation(s)
- D H Phillips
- Haddow Laboratories, Institute of Cancer Research, Sutton, U.K
| | | |
Collapse
|
9
|
Abstract
The reaction of melphalan (phenylalanine mustard, I) with 2'-deoxyguanosine, followed by removal of the sugar in acid, yielded two products. The major product was identified as 4-(N-(2-guanin-7-ylethyl)-N-(2-hydroxyethyl)amino)phenyl- alanine (II) by ultra-violet absorption, mass and NMR spectroscopy. The minor product has already been identified as the corresponding bis-guaninyl adduct III (Tilby et al., Chem.-Biol. Interact., 73 (1990) 183-194). The reaction of melphalan with 5'-deoxyguanylic acid yielded the deoxyribonucleotide of II and products resulting from reaction with the phosphate group. The initial products, which were formed with a half-life of approximately 40 min at 37 degrees, still had a reactive chloroethyl group; this was displaced more slowly, by reaction with water or with another molecule of dGMP. The products of reaction of melphalan with DNA were released by treatment with acid (0.1 M HCl, 70 degrees, 30 min) and separated from each other on a cation exchange column. They were identified as II, III and an adenine adduct, in a ratio of approximately 3:1:2.
Collapse
Affiliation(s)
- M R Osborne
- Institute of Cancer Research, Haddow Laboratory, Sutton, Surrey, UK
| | | |
Collapse
|
10
|
Li F, Segal A, Solomon JJ. In vitro reaction of ethylene oxide with DNA and characterization of DNA adducts. Chem Biol Interact 1992; 83:35-54. [PMID: 1643667 DOI: 10.1016/0009-2797(92)90090-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ethylene oxide (EO) is a direct-acting SN2 alkylating agent and a rodent and probable human carcinogen. In vitro reactions of EO with calf thymus DNA in aqueous solution at neutral pH and 37 degrees C for 10 h resulted in the following 2-hydroxyethyl (HE) adducts (nmol/mg DNA): 7-HE-Gua (330), 3-HE-Ade (39), 1-HE-Ade (28), N6-HE-dAdo (6.2), 3-HE-Cyt (3.1), 3-HE-Ura (0.8) and 3-HE-dThd (2.0). Reference (marker) compounds were synthesized from reactions of EO with 2'-deoxyribonucleosides and DNA bases, isolated by paper and high performance liquid chromatography and characterized on the basis of chemical properties and UV, NMR and mass spectra. In agreement with our earlier studies with propylene oxide (PO) (Chem.-Biol. Interact., 67 (1988) 275-294) and glycidol (Cancer Biochem. Biophys., 11 (1990) 59-67), alkylation at N-3 of dCyd by EO under physiological conditions resulted in the rapid hydrolytic deamination of 3-HE-dCyd to 3-HE-dUrd. The hydroxyl group on the alkyl side chain which forms after epoxide alkylation is mechanistically involved in this rapid hydrolytic deamination. These results may provide important insights into the mechanisms of mutagenicity and carcinogenicity exhibited by EO and other SN2 aliphatic epoxides.
Collapse
Affiliation(s)
- F Li
- Institute of Environmental Medicine, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
11
|
32P-postlabeling of N-7, N2 and O6 2'-deoxyguanosine 3'-monophosphate adducts of styrene oxide. Chem Biol Interact 1991; 77:39-50. [PMID: 1983964 DOI: 10.1016/0009-2797(91)90004-q] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adducts were prepared by reacting styrene oxide with 2-deoxyguanosine 3'-monophosphate (dGMP). Four isomeric N-7-, two diastereomeric N2- and three isomeric O6-adduct were isolated and characterized. The adducts were used as substrates in the 32P-postlabeling reaction. No phosphorylation products were seen with the N-7-alkylation products. One diastereomeric N2-adduct was labeled with 20% efficiency and the second with a markedly lower efficiency. Two of the three O6-adducts were labeled with 5% and the third with 10% labeling efficiency. The results suggest that large N-7-dGMP adducts are very poor substrates of T4 polynucleotide kinase. The diastereomeric products are labeled at different efficiencies indicating stereoselectivity in the kinase reaction.
Collapse
|