1
|
Allmann S, Mayer L, Olma J, Kaina B, Hofmann TG, Tomicic MT, Christmann M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic Acids Res 2020; 48:12085-12101. [PMID: 33166399 PMCID: PMC7708059 DOI: 10.1093/nar/gkaa965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.
Collapse
Affiliation(s)
- Sebastian Allmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Laura Mayer
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Jessika Olma
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Maja T Tomicic
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Markus Christmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
2
|
Chakraborty S, Steinbach PJ, Paul D, Mu H, Broyde S, Min JH, Ansari A. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Res 2019; 46:1240-1255. [PMID: 29267981 PMCID: PMC5815138 DOI: 10.1093/nar/gkx1216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions.
Collapse
Affiliation(s)
- Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debamita Paul
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
4
|
Christmann M, Boisseau C, Kitzinger R, Berac C, Allmann S, Sommer T, Aasland D, Kaina B, Tomicic MT. Adaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations. Nucleic Acids Res 2016; 44:10727-10743. [PMID: 27694624 PMCID: PMC5159553 DOI: 10.1093/nar/gkw873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
A coordinated and faithful DNA damage response is of central importance for maintaining genomic integrity and survival. Here, we show that exposure of human cells to benzo(a)pyrene 9,10-diol-7,8-epoxide (BPDE), the active metabolite of benzo(a)pyrene (B(a)P), which represents a most important carcinogen formed during food preparation at high temperature, smoking and by incomplete combustion processes, causes a prompt and sustained upregulation of the DNA repair genes DDB2, XPC, XPF, XPG and POLH. Induction of these repair factors on RNA and protein level enhanced the removal of BPDE adducts from DNA and protected cells against subsequent BPDE exposure. However, through the induction of POLH the mutation frequency in the surviving cells was enhanced. Activation of these adaptive DNA repair genes was also observed upon B(a)P treatment of MCF7 cells and in buccal cells of human volunteers after cigarette smoking. Our data provide a rational basis for an adaptive response to polycyclic aromatic hydrocarbons, which occurs however at the expense of mutations that may drive cancer formation.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Catherine Boisseau
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Rebekka Kitzinger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Christian Berac
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Sebastian Allmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Tina Sommer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Dorthe Aasland
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
5
|
Guttenplan JB, Chen KM, Sun YW, Kosinska W, Zhou Y, Kim SA, Sung Y, Gowda K, Amin S, Stoner GD, El-Bayoumy K. Effects of Black Raspberry Extract and Protocatechuic Acid on Carcinogen-DNA Adducts and Mutagenesis, and Oxidative Stress in Rat and Human Oral Cells. Cancer Prev Res (Phila) 2016; 9:704-12. [PMID: 27267891 DOI: 10.1158/1940-6207.capr-16-0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a,l]pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (±)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a,l]pyrene (DBP-diol) and 11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. Cancer Prev Res; 9(8); 704-12. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, New York University College of Dentistry, New York, New York. Department of Environmental Medicine, New York University School of Medicine, New York, New York.
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wieslawa Kosinska
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Ying Zhou
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Seungjin Agatha Kim
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Youngjae Sung
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gary D Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
6
|
Vázquez-Gómez G, Rubio-Lightbourn J, Espinosa-Aguirre JJ. MECANISMOS DE ACCIÓN DEL RECEPTOR DE HIDROCARBUROS DE ARILOS EN EL METABOLISMO DEL BENZO[A]PIRENO Y EL DESARROLLO DE TUMORES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Kropachev K, Kolbanovskiy M, Liu Z, Cai Y, Zhang L, Schwaid AG, Kolbanovskiy A, Ding S, Amin S, Broyde S, Geacintov NE. Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem Res Toxicol 2013; 26:783-93. [PMID: 23570232 DOI: 10.1021/tx400080k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar but somewhat smaller effect (factor of ∼15) is observed. The striking resistance of the bulky N(6)-dA in contrast to the modest to good susceptibilities of the N(2)-dG adducts to NER is interpreted in terms of the balance between lesion-induced DNA distorting and DNA stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012; 12:1731-55. [DOI: 10.1002/pmic.201100466] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Mario Pink
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Simone Schmitz-Spanke
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
9
|
Lagerqvist A, Håkansson D, Lundin C, Prochazka G, Dreij K, Segerbäck D, Jernström B, Törnqvist M, Frank H, Seidel A, Erixon K, Jenssen D. DNA repair and replication influence the number of mutations per adduct of polycyclic aromatic hydrocarbons in mammalian cells. DNA Repair (Amst) 2011; 10:877-86. [PMID: 21727035 DOI: 10.1016/j.dnarep.2011.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are an important class of environmental contaminants many of which require metabolic activation to DNA-reactive bay or fjord region diolepoxides (DE) in order to exert their mutagenic and carcinogenic effects. In this study, the mutagenicity of the bay region diolepoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (±)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrodibenzo[a,h]anthracene (DBADE) and the fjord region diolepoxides (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]-pyrene (DBPDE) and (±)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]-phenanthrene (BPhDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. The (32)P-postlabelling assay was applied to analyze DNA adduct levels and the Hprt gene mutation assay for monitoring mutations. Previously, we found that the mutagenicity per adduct was four times higher for DBPDE compared to BPDE in NER proficient cells. In these same cells, the mutagenicity of DBADE and BPhDE adducts was now found to be significantly lower compared to that of BPDE. In NER deficient cells the highest mutagenicity per adduct was found for BPDE and there was a tenfold and fivefold difference when comparing the BPDE data with the DBADE and BPhDE data, respectively. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the Hprt gene. Since NER turned out to be an important pathway for the yield of mutations, we further analyzed the role of transcription coupled NER versus global genome NER. However, our data demonstrate that neither of these pathways seems to be the sole factor determining the mutation frequency of the four PAH-DE and that the differences in the repair efficiency of these compounds could not be related to the presence of a bay or fjord region in the parent PAH.
Collapse
Affiliation(s)
- Anne Lagerqvist
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lagerqvist A, Håkansson D, Frank H, Seidel A, Jenssen D. Structural requirements for mutation formation from polycyclic aromatic hydrocarbon dihydrodiol epoxides in their interaction with food chemopreventive compounds. Food Chem Toxicol 2010; 49:879-86. [PMID: 21172398 DOI: 10.1016/j.fct.2010.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 01/28/2023]
Abstract
Chinese hamster V79 cells were used to investigate the protective effect of four known antimutagens present in food, chlorophyllin (CHL), ellagic acid (EA), epigallocathechingallate (EGCG) and benzylisothiocyanate (BITC), against potent mutagenic polycyclic aromatic hydrocarbon diol epoxides (PAH-DE) derived from benzo[a]pyrene (BP), dibenzo[a,h]anthracene (DBA), dibenzo[a,l]pyrene (DBP), and benzo[c]phenanthrene (BPh) known to be deposited on crops from polluted ambient air or formed during food processing. As fjord-region PAH-DE are more toxic and mutagenic than bay-region PAH-DE, we adjusted the concentrations of PAH-DE to induce approximately the same levels of adducts. The studies were performed using an assay indicating toxicity in terms of reduced cell proliferation together with the V79 Hprt assay for monitoring mutant frequencies. CHL significantly increased the survival and showed a protective effect against the mutagenicity of all PAH-DE. A significant protective effect of EA was found towards the mutagenicity of BPDE, DBPDE and BPhDE and with EGCG for BPDE and BPhDE. BITC had a slight positive effect on the mutagenicity of DBADE and BPhDE. Taken together, a novel and unexpected finding was that the antimutagenic activity could differ as much as by a factor of 7 towards four carcinogenic PAH metabolites being relatively similar in structure and genotoxic activity.
Collapse
Affiliation(s)
- Anne Lagerqvist
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Cancer is as a highly complex and multifactorial disease responsible for the death of hundreds of thousands of people in the western countries every year. Since cancer is clonal and due to changes at the level of the genetic material, viruses, chemical mutagens and other exogenous factors such as short-waved electromagnetic radiation that alter the structure of DNA are among the principal causes. The focus of this present review lies on the influence of the molecular structure of two well-investigated chemical carcinogens from the group of polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP). Although there is only one additional benzo ring present in the latter compound, DBP exerts much stronger genotoxic and carcinogenic effects in certain tumor models as compared to BP. Actually, DBP has been identified as the most potent tumorigen among all carcinogenic PAHs tested to date. The genotoxic effects of both compounds investigated in mammalian cells in culture or in animal models are described. Comparison of enzymatic activation, DNA binding levels of reactive diol-epoxide metabolites, efficiency of DNA adduct repair and mutagenicity provides some clues on why this compound is about 100-fold more potent in inducing tumors than BP. The data published during the past 20 years support and strengthen the idea that compound-inherent physicochemical parameters, along with inefficient repair of certain kinds of DNA lesions formed upon metabolic activation, can be considered as strong determinants for high carcinogenic potency of a chemical.
Collapse
|
12
|
Mahadevan B, Luch A, Atkin J, Nguyen T, Sharma AK, Amin S, Baird. WM. Investigation of the genotoxicity of dibenzo[c,p]chrysene in human carcinoma MCF-7 cells in culture. Chem Biol Interact 2006; 164:181-91. [PMID: 17094953 PMCID: PMC1794669 DOI: 10.1016/j.cbi.2006.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andreas Luch
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennifer Atkin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Tuan Nguyen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Arun K. Sharma
- Penn State College of Medicine, Department of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - Shantu Amin
- Penn State College of Medicine, Department of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - William M. Baird.
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Little SB, Rabinowitz JR, Wei P, Yang W. A Comparison of Calculated and Experimental Geometries for Crowded polycyclic Aromatic Hydrocarbons and their Metabolites. Polycycl Aromat Compd 1999. [DOI: 10.1080/10406639908019111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Suri AK, Mao B, Amin S, Geacintov NE, Patel DJ. Solution conformation of the (+)-trans-anti-benzo[g]chrysene-dA adduct opposite dT in a DNA duplex. J Mol Biol 1999; 292:289-307. [PMID: 10493876 DOI: 10.1006/jmbi.1999.2974] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the adduct derived from the covalent bonding of the fjord region (+)-(11S, 12R, 13R, 14S) stereoisomer of anti -11,12-dihydroxy-13,14-epoxy-11,12,13, 14-tetrahydrobenzo[g]chrysene, (+)- anti -B[g]CDE, to the exocyclic N(6)amino group of the adenine residue dA6, (designated (+)- trans-anti -(B[g]C)dA6), positioned opposite a thymine residue dT17 in the DNA sequence context d(C1-T2-C3-T4-C5-(B[g]C)A6-C7-T8-T9-C10-C11). d(G12-G13-A14-A15-G16-T17-G18-A19-G20++ +-A21-G22) (designated (B[g]C)dA. dT 11-mer duplex), has been studied using structural information derived from NMR data in combination with molecular dynamics (MD) calculations. The solution structure of the (+)- trans-anti -(B[g]C)dA.dT 11-mer duplex has been determined using an MD protocol where both interproton distance and dihedral angle restraints deduced from NOESY and COSY spectra are used during the refinement process, followed by additional relaxation matrix refinement to the observed NOESY intensities to account for spin diffusion effects. The results established that the covalently attached benzo[g]chrysene ring intercalates into the DNA helix directed towards the 5'-side of the modified strand and stacks predominantly with dT17 when intercalated between dC5.dG18 and (B[g]C)dA6.dT17 base-pairs. All base-pairs, including the modified (B[g]C)dA6.dT17 base-pair, are aligned through Watson-Crick pairing as in normal B -DNA. In addition, the potential strain associated with the highly sterically hindered fjord region of the aromatic portion of the benzo[g]chrysenyl ring is relieved through the adoption of a non-planar, propeller-like geometry within the chrysenyl ring system. This conformation shares common structural features with the related (+)- trans-anti -(B[c]Ph)dA adduct in the identical base sequence context, derived from the fjord region (+)-(1S,2R,3R,4S)-3, 4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene stereoisomer, in which intercalation is also observed towards the 5'-side of the modified dA6.dT17 base-pair.
Collapse
Affiliation(s)
- A K Suri
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
15
|
Luch A, Seidel A, Glatt H, Platt KL. Metabolic activation of the (+)-S,S- and (-)-R,R-enantiomers of trans-11,12-dihydroxy-11,12-dihydrodibenzo[a,l]pyrene: stereoselectivity, DNA adduct formation, and mutagenicity in Chinese hamster V79 cells. Chem Res Toxicol 1997; 10:1161-70. [PMID: 9348439 DOI: 10.1021/tx970005i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons require metabolic activation in order to exert their biological activity initiated by DNA binding. The metabolic pathway leading to bay or fjord region dihydrodiol epoxides as ultimate mutagenic and/or carcinogenic metabolites is thought to play a dominant role. For dibenzo[a,l]pyrene, considered as the most potent carcinogenic polycyclic aromatic hydrocarbon, the formation of the fjord region syn- and/or anti-11,12-dihydrodiol 13,-14-epoxide (DB[a,l]PDE) diastereomers has been found to be the principal metabolic activation pathway in cell cultures leading to DNA adducts. In order to further elucidate the stereoselectivity involved in this activation pathway via the formation of the trans-11,12-dihydrodiol, we have synthesized the enantiomerically pure 11,12-dihydrodiols of dibenzo[a,l]-pyrene and investigated their biotransformation in rodents. Incubations with liver microsomes of Sprague-Dawley rats and CD-1 mice pretreated with Aroclor 1254 revealed that the enzymatic conversion to the fjord region DB[a,l]PDE strongly depends on the absolute configuration of the 11,12-dihydrodiol enantiomers. While oxidation at the 13,14-position of the (+)-(11S,12S)-dihydrodiol is limited to a small extent, the (-)-11R,12R-enantiomer is metabolized to its fjord region dihydrodiol epoxides in considerably higher amounts. Moreover, this substrate is transformed with high stereoselectivity to the corresponding (-)-anti-dihydrodiol epoxide by liver microsomes of Aroclor 1254-treated rodents. The metabolism results were in good accordance with the extent of stable adduct formation in calf thymus DNA as investigated by the 32P-postlabeling technique and with the mutagenicity in Chinese hamster V79 cells of the two enantiomeric 11,12-dihydrodiols mediated by hepatic postmitochondrial preparations of Aroclor 1254-treated rats. The results indicate that both genotoxic events occurred predominantly by the stereoselective activation of the (-)-(11R,12R)-dihydrodiol to the (-)-anti-DB[a,l]PDE with R,S,S,R-configuration.
Collapse
Affiliation(s)
- A Luch
- Institute of Toxicology, University of Mainz, Germany.
| | | | | | | |
Collapse
|
16
|
Arif JM, Smith WA, Gupta RC. Tissue distribution of DNA adducts in rats treated by intramammillary injection with dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene. Mutat Res 1997; 378:31-9. [PMID: 9288883 DOI: 10.1016/s0027-5107(97)00095-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dibenzo[a,l]pyrene (DBP) has recently emerged as a potent environmental carcinogen having greater carcinogenicity in the rat mammary epithelial glands than 7,12-dimethylbenz[a]anthracene (DMBA), previously considered to be the most potent mammary carcinogen and benzo[a]pyrene (BP), a ubiquitous environmental carcinogen. Previous studies on the tumor-initiating potential of DBP, DMBA, and BP demonstrated that DBP was 2.5 times more potent in inducing the tumors in mouse skin and rat mammary glands than DMBA; BP was a weak mammary carcinogen in these animals. The present study was designed to investigate if the significantly increased mammary carcinogenicity of DBP over DMBA and BP was related to increased DNA adduction at the target site. Female Sprague-Dawley rats were treated by intramammillary injection with an equimolar dose of 0.25 micromol/gland of DBP, DMBA, and BP at the 3rd, 4th and 5th mammary glands on both sides. 32P-Postlabeling analysis of mammary epithelial DNA of rats treated with DBP produced two major (nos. 3 and 6) and at least 5 minor adducts. DMBA treatment resulted in one major and 4 minor DNA adducts while BP produced one major and two minor adducts. Quantitation of the adduct radioactivity revealed that DNA adduction was 6- and 9-fold greater in DBP-treated animals than in BP- and DMBA-treated animals, respectively. The adduct levels per 10(9) nucleotides in mammary epithelial cells for DBP, BP and DMBA were in the following descending order: 1828 +/- 378, 300 +/- 45 and 207 +/- 72, respectively. Tissue distribution of DNA adducts in non-target organs following DBP treatment showed similar adduct pattern as found in the mammary epithelial cells except the liver, which resulted in 4 additional adduct spots; vehicle-treated tissue DNA processed in parallel did not show any detectable adducts. DMBA- and BP-DNA adduct patterns in various tissues were similar to that found in mammary epithelial cells, however, significant quantitative differences were found; BP-DNA adducts were undetectable in the pancreas and bladder. Quantitation of adduct radioactivity showed a 15- to 60-fold lower DBP-DNA adduction in these tissues than the levels found in the mammary tissue; similarly 5-20 and 30-100 times lower DNA adduction was found following treatment with DMBA and BP, respectively. The significantly increased binding of DBP to the mammary epithelial DNA over BP and DMBA is in concordance with its known higher mutagenicity and tumorigenicity.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/analogs & derivatives
- 9,10-Dimethyl-1,2-benzanthracene/metabolism
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Benzo(a)pyrene/metabolism
- Benzo(a)pyrene/toxicity
- Benzopyrenes/metabolism
- Benzopyrenes/toxicity
- Carcinogens/metabolism
- Carcinogens/toxicity
- DNA/metabolism
- DNA Adducts/metabolism
- Female
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mutagens/metabolism
- Mutagens/toxicity
- Phosphorus Radioisotopes/metabolism
- Rats
- Rats, Sprague-Dawley
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J M Arif
- Preventive Medicine and Environmental Health, University of Kentucky Medical Center, Lexington 40536, USA
| | | | | |
Collapse
|
17
|
Amin S, Desai D, El-Bayoumy K, Rivenson A, Hecht SS. Tumorigenicity of Fjord Region Diol Epoxides of Polycyclic Aromatic Hydrocarbons. Polycycl Aromat Compd 1996. [DOI: 10.1080/10406639608544688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Steinberg P, Frank H, Oesch F, Seidel A. The Stereoisomeric Fjord-Region Benzo[ c]phenanthrene-3,4-Dihydrodiol 1,2-Oxides Malignantly Transform Rat Liver Epithelial Cells. Polycycl Aromat Compd 1996. [DOI: 10.1080/10406639608034707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Mumtaz MM, George JD, Gold KW, Cibulas W, DeRosa CT. ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol Ind Health 1996; 12:742-971. [PMID: 9050165 DOI: 10.1177/074823379601200601] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. There are more than 100 PAHs. PAHs generally occur as complex mixtures (for example, as part of products such as soot), not as single compounds. PAHs are found throughout the environment in the air, water, and soil. As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals, including PAHs (ATSDR, 1995), found at facilities on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) and which pose the most significant potential threat to human health, as determined by ATSDR and the Environmental Protection Agency (EPA). These profiles include information on health effects of chemicals from different routes and durations of exposure, their potential for exposure, regulations and advisories, and the adequacy of the existing database. Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are usually to complex mixtures of PAHs with other chemicals. The biological consequences of human exposure to mixtures of PAHs depend on the toxicity, carcinogenic and noncarcinogenic, of the individual components of the mixture, the types of interactions among them, and confounding factors that are not thoroughly understood. Also identified are components of exposure and health effects research needed on PAHs that will allow estimation of realistic human health risks posed by exposures to PAHs. The exposure assessment component of research should focus on (1) development of reliable analytical methods for the determination of bioavailable PAHs following ingestion, (2) estimation of bioavailable PAHs from environmental media, particularly the determination of particle-bound PAHs, (3) data on ambient levels of PAHs metabolites in tissues/fluids of control populations, and (4) the need for a critical evaluation of current levels of PAHs found in environmental media including data from hazardous waste sites. The health effects component should focus on obtaining information on (1) the health effects of mixtures of PAHs particularly their noncarcinogenic effects in humans, and (2) their toxicokinetics. This report provides excerpts from the toxicological profile of PAHs (ATSDR, 1995) that contains more detailed information.
Collapse
Affiliation(s)
- M M Mumtaz
- Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
| | | | | | | | | |
Collapse
|
20
|
Jankowiak R, Ariese F, Suh M, Small GJ. Conformations of Depurinating Adducts from Dibenzo[a,l]pyrene Diolepoxide. Polycycl Aromat Compd 1996. [DOI: 10.1080/10406639608034709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Du MQ, Seidel A, Phillips DH. Activating mutations in human c-Ha-ras-1 protooncogene induced by stereoisomeric fjord-region benzo[c]chrysene diol-epoxides. Mol Carcinog 1995; 14:160-9. [PMID: 7576108 DOI: 10.1002/mc.2940140305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mutagenicity of fjord-region benzo[c]chrysene diol-epoxide (BcCDE) stereoisomers((+) anti-BcCDE, (-)anti-BcCDE, (+)syn-BcCDE, and (-)syn-BcCDE) was studied in a forward-mutation system. pEC plasmid containing the human c-Ha-ras-1 proto-oncogene was reacted in vitro with each optically active isomer separately and transfected into NIH/3T3 cells. Morphologically transformed foci were cloned, and DNA obtained from these foci was tested for the presence of Ha-ras-1 sequence by Southern blot analysis. A total of 50 transformed foci (11-14 for each diastereomer) were generated. To determine the nature of mutations responsible for activating the proto-oncogene, regions of the gene likely to contain the activating mutations were amplified by polymerase chain reaction and then subjected to hybridization with specific oligonucleotides. Gene mutations in 42 of 50 transformed foci were characterized by these methods, and most were found at codon 61 (27), followed by codons 12 (13) and 13 (two). All mutations observed were either G --> T or A --> A --> T transversions. Thirty-six were G --> T transversion mutations occurring at codons 61, 12, and 13. The remaining six were A --> T transversions at codon 61.BcCDE stereoisomers may specifically attack guanine and adenine and result in the mutations observed. Some differences in codon preference but not in the types of mutations were found among these optically active isomers.
Collapse
Affiliation(s)
- M Q Du
- Section of Molecular Carcinogenesis, Haddow Laboratories, Institute of Cancer Research, Sutton, United Kingdom
| | | | | |
Collapse
|
22
|
Carothers AM, Zhen W, Mucha J, Zhang YJ, Santella RM, Grunberger D, Bohr VA. DNA strand-specific repair of (+-)-3 alpha,4 beta-dihydroxy-1 alpha,2 alpha-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene adducts in the hamster dihydrofolate reductase gene. Proc Natl Acad Sci U S A 1992; 89:11925-9. [PMID: 1465420 PMCID: PMC50670 DOI: 10.1073/pnas.89.24.11925] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We evaluated the formation and removal of (+-)-3 alpha,4 beta-dihydroxy-1 alpha,2 alpha-epoxy-1,2,3,4- tetrahydrobenzo[c]phenanthrene (BcPHDE)-DNA adducts in two Chinese hamster ovary (CHO) cell lines. One line of repair-proficient cells (MK42) carries a stable 150-fold amplification of the dihydrofolate reductase (DHFR) locus. The other line of repair-deficient cells (UV-5) is diploid for this gene and is defective in excision of bulky DNA lesions. Two methods were used to quantitate adduct levels in treated cells: Escherichia coli UvrABC excision nuclease cleavage and 32P-postlabeling. DNA repair was examined in the actively transcribed DHFR gene, in an inactive region located 25 kilobases downstream, and in the overall genome. Between 8 and 24 hr after BcPHDE exposure, preferential repair of the DHFR gene compared to the noncoding region was apparent in MK42 cells. This gene-specific repair was associated with adduct removal from the DHFR transcribed strand. However, UV-5 cells showed no lesion reduction from this strand of the gene. By both quantitation methods, regions accessible to repair in MK42 cells showed a 2-fold reduction in DNA adduct levels by 24 hr. That the decline in adducts reflects genomic repair was demonstrated by the constant damage level remaining in UV-5 cells. Since BcPHDE-induced mutations in DHFR apparently arise from adducted purines on the nontranscribed strand, results from the present study support the idea that a consequence of strand-specific repair is strand-biased mutations.
Collapse
Affiliation(s)
- A M Carothers
- Institute of Cancer Research, Columbia University, New York, NY 10032
| | | | | | | | | | | | | |
Collapse
|