1
|
Abstract
Chemical synthesis of trehalose glycolipids such as DAT, TDM, SL-1, SL-3, and Ac2SGL from MTb, emmyguyacins from fungi, succinoyl trehalose from rhodococcus, and maradolipids from worms, as well as mycobacterial oligosaccharides is reviewed.
Collapse
Affiliation(s)
- Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | |
Collapse
|
2
|
Kuyukina MS, Ivshina IB. Production of Trehalolipid Biosurfactants by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Vincent AT, Nyongesa S, Morneau I, Reed MB, Tocheva EI, Veyrier FJ. The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Front Microbiol 2018; 9:2341. [PMID: 30369911 PMCID: PMC6194230 DOI: 10.3389/fmicb.2018.02341] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
Mycobacteria are well known for their taxonomic diversity, their impact on global health, and for their atypical cell wall and envelope. In addition to a cytoplasmic membrane and a peptidoglycan layer, the cell envelope of members of the order Corynebacteriales, which include Mycobacterium tuberculosis, also have an arabinogalactan layer connecting the peptidoglycan to an outer membrane, the so-called “mycomembrane.” This unusual cell envelope composition of mycobacteria is of prime importance for several physiological processes such as protection from external stresses and for virulence. Although there have been recent breakthroughs in the elucidation of the composition and organization of this cell envelope, its evolutionary origin remains a mystery. In this perspectives article, the characteristics of the cell envelope of mycobacteria with respect to other actinobacteria will be dissected through a molecular evolution framework in order to provide a panoramic view of the evolutionary pathways that appear to be at the origin of this unique cell envelope. In combination with a robust molecular phylogeny, we have assembled a gene matrix based on the presence or absence of key determinants of cell envelope biogenesis in the Actinobacteria phylum. We present several evolutionary scenarios regarding the origin of the mycomembrane. In light of the data presented here, we also propose a novel alternative hypothesis whereby the stepwise acquisition of core enzymatic functions may have allowed the sequential remodeling of the external cell membrane during the evolution of Actinobacteria and has led to the unique mycomembrane of slow-growing mycobacteria as we know it today.
Collapse
Affiliation(s)
- Antony T Vincent
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada.,McGill International TB Centre, Montreal, QC, Canada
| | - Sammy Nyongesa
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Isabelle Morneau
- Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Michael B Reed
- McGill International TB Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elitza I Tocheva
- Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Frederic J Veyrier
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada.,McGill International TB Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Sarpe VA, Jana S, Kulkarni SS. Synthesis of Mycobacterium tuberculosis Sulfolipid-3 Analogues and Total Synthesis of the Tetraacylated Trehaloglycolipid of Mycobacterium paraffinicum. Org Lett 2015; 18:76-9. [PMID: 26652194 DOI: 10.1021/acs.orglett.5b03300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel methodology for the regioselective O6 acylation of the 2,3-diacyl trehaloses to access Mycobacterium tuberculosis sulfolipid SL-3 and related 2,3,6-triester glycolipid analogues is reported for the first time. The methodology was successfully extended to achieve the first total synthesis of the tetraacylated trehalose glycolipid from Mycobacterium paraffinicum. The corresponding 2,3,6'-triesters trehalose glycolipids were also synthesized starting from the common 2,3-diacyl trehalose. These synthetic glycolipids are potential candidates for serodiagnosis and vaccine development for tuberculosis.
Collapse
Affiliation(s)
- Vikram A Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
5
|
|
6
|
Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM. Production and applications of trehalose lipid biosurfactants. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900162] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Kuyukina MS, Ivshina IB. Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Rapp P, Gabriel-Jürgens LHE. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology (Reading) 2003; 149:2879-2890. [PMID: 14523120 DOI: 10.1099/mic.0.26188-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus sp. strain MS11 was isolated from a mixed culture. It displays a diverse range of metabolic capabilities. During growth on 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 3-chlorobenzoate stoichiometric amounts of chloride were released. It also utilized all three isomeric dichlorobenzenes and 1,2,3-trichlorobenzene as the sole carbon and energy source. Furthermore, the bacterium grew well on a great number of n-alkanes ranging from n-heptane to n-triacontane and on the branched alkane 2,6,10,14-tetramethylpentadecane (pristane) and slowly on n-hexane and n-pentatriacontane. It was able to grow at temperatures from 5 to 30 °C, with optimal growth at 20 °C, and could tolerate 6 % NaCl in mineral salts medium. Genes encoding the initial chlorobenzene dioxygenase were detected by using a primer pair that was designed against the α-subunit (TecA1) of the chlorobenzene dioxygenase of Ralstonia (formerly Burkholderia) sp. strain PS12. The amino acid sequence of the amplified part of the α-subunit of the chlorobenzene dioxygenase of Rhodococcus sp. strain MS11 showed >99 % identity to the α-subunit of the chlorobenzene dioxygenase from Ralstonia sp. strain PS12 and the parts of both α-subunits responsible for substrate specificity were identical. The subsequent enzymes dihydrodiol dehydrogenase and chlorocatechol 1,2-dioxygenase were induced in cells grown on 1,2,4,5-TeCB. During cultivation on medium-chain-length n-alkanes ranging from n-decane to n-heptadecane, including 1-hexadecene, and on the branched alkane pristane, strain MS11 produced biosurfactants lowering the surface tension of the cultures from 72 to ⩽29 mN m−1. Glycolipids were extracted from the supernatant of a culture grown on n-hexadecane and characterized by 1H- and 13C-NMR-spectroscopy and mass spectrometry. The two major components consisted of α,α-trehalose esterified at C-2 or C-4 with a succinic acid and at C-2′ with a decanoic acid. They differed from one another in that one 2,3,4,2′-trehalosetetraester, found in higher concentration, was esterified at C-2, C-3 or C-4 with one octanoic and one decanoic acid and the other one, of lower concentration, with two octanoic acids. The results demonstrate that Rhodococcus sp. strain MS11 may be well suited for bioremediation of soils and sediments contaminated for a long time with di-, tri- and tetrachlorobenzenes as well as alkanes.
Collapse
Affiliation(s)
- Peter Rapp
- GBF-National Research Centre for Biotechnology, Division of Microbiology, Mascheroderweg 1, D-38124 Braunschweig, Germany
| | - Lotte H E Gabriel-Jürgens
- GBF-National Research Centre for Biotechnology, Division of Microbiology, Mascheroderweg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
10
|
Esch SW, Morton MD, Williams TD, Buller CS. A novel trisaccharide glycolipid biosurfactant containing trehalose bears ester-linked hexanoate, succinate, and acyloxyacyl moieties: NMR and MS characterization of the underivatized structure. Carbohydr Res 1999; 319:112-23. [PMID: 10520259 DOI: 10.1016/s0008-6215(99)00122-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A Gram-positive actinomycete growing on n-hexadecane secreted a family of anionic glycolipid surfactant homologs. The major homolog, with a molecular weight of 1210.6347, had the formula C58H98O26. Following mild alkaline saponification, 1H and 13C NMR spectroscopy were used to characterize the non-reducing trisaccharide backbone: beta-Glcp-(1-->3)-alpha-Glcp-(1<-->1)-alpha-Glcp ('laminaratrehalose'). Hexanoate, succinate, 3-hydroxyoctanoate, and 3-hydroxydecanoate were found in 3:1:1:1 molar ratio using GC-EIMS analysis of fatty acid methyl esters (FAME) prepared by transesterification. We found that the beta-hydroxy acids bore secondary hexanoate chains in 3-O-ester linkage, giving acyloxyacyl anions of appropriate m/z in FABMS and FABMS/MS spectra. COSY, HETCOR, HMBC, and HMQC NMR experiments established the acylation pattern: succinate at C-2 of the terminal alpha-glucopyranose ring; hexanoate at C-3" of the beta-glucopyranose ring; 3-hexanoyloxyoctanoate and 3-hexanoyloxydecanoate at the 2'- and 4-positions. In FABMS spectra, the homologs flanked the molecular ion by +/- 14 and +/- 28 amu, suggesting heterogeneity in acyl chain length.
Collapse
Affiliation(s)
- S W Esch
- Higuchi Biosciences Center, University of Kansas, Lawrence 66047, USA
| | | | | | | |
Collapse
|
11
|
Liav A, Goren MB. An improved synthesis of 6-O-mycoloyl- and 6-O-corynomycoloyl-alpha,alpha-trehalose with observations on the permethylation analysis of trehalose glycolipids. Carbohydr Res 1986; 155:229-35. [PMID: 3539333 DOI: 10.1016/s0008-6215(00)90151-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
|
13
|
|
14
|
Ristau E, Wagner F. Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett 1983. [DOI: 10.1007/bf00132166] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|