Ayanoglu E, Chiche BH, Beatty M, Djerassi C, Düzgüneş N. Cholesterol interactions with tetracosenoic acid phospholipids in model cell membranes: role of the double-bond position.
Biochemistry 1990;
29:3466-71. [PMID:
2354147 DOI:
10.1021/bi00466a007]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and thermotropic properties of 1,2-di-(9Z)-9-tetracosenoylphosphatidylcholine [delta 9-PC(24:1,24:1), 1], 1,2-di-(5Z)-5-tetracosenoylphosphatidylcholine [delta 5-PC(24:1,24:1), 2], and 1,2-di-(15Z)-15- tetracosenoylphosphatidylcholine [delta 15-PC(24:1,24:1), 3] are reported. Liposomes prepared from these phospholipids differ from those of the natural sponge phospholipids, 1,2-di-(5Z,9Z)-5,9-hexacosadienoylphosphatidylcholine (4a) and the corresponding ethanolamine (4b), both of which virtually exclude cholesterol from their bilayers. The behavior of 1 and 2 is similar to that of 1,2-di-(6Z,9Z)-6,9-hexacosadienoylphosphatidylcholine (5), which exhibits a partial molecular interaction with cholesterol. In the case of 3, cholesterol appears to interact with the saturated acyl chain regions of this phospholipid in a manner similar to that of its interaction with DPPC acyl chains. This study delineates the effect of the double-bond location in long fatty acyl chains of phospholipids on their interactions with cholesterol.
Collapse