1
|
Zhang Q, Huang L, Zhang C, Xie P, Zhang Y, Ding S, Xu F. Synthesis and biological activity of polyprenols. Fitoterapia 2015; 106:184-93. [PMID: 26358482 DOI: 10.1016/j.fitote.2015.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Beijing Forestry University, Beijing 100083, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Yaolei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Shasha Ding
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Feng Xu
- Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Heitz BA, Jones IW, Hall HK, Aspinwall CA, Saavedra SS. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. J Am Chem Soc 2010; 132:7086-93. [PMID: 20441163 DOI: 10.1021/ja100245d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Suspended planar lipid membranes (or black lipid membranes (BLMs)) are widely used for studying reconstituted ion channels, although they lack the chemical and mechanical stability needed for incorporation into high-throughput biosensors and biochips. Lipid polymerization enhances BLM stability but is incompatible with ion channel function when membrane fluidity is required. Here, we demonstrate the preparation of a highly stable BLM that retains significant fluidity by using a mixture of polymerizable and nonpolymerizable phospholipids. Alamethicin, a voltage-gated peptide channel for which membrane fluidity is required for activity, was reconstituted into mixed BLMs prepared using bis-dienoyl phosphatidylcholine (bis-DenPC) and diphytanoyl phosphatidylcholine (DPhPC). Polymerization yielded BLMs that retain the fluidity required for alamethicin activity yet are stable for several days as compared to a few hours prior to polymerization. Thus, these polymerized, binary composition BLMs feature both fluidity and long-term stability.
Collapse
Affiliation(s)
- Benjamin A Heitz
- Department of Chemistry and Biochemistry and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
4
|
Kupisz K, Sujak A, Patyra M, Trebacz K, Gruszecki WI. Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2334-40. [DOI: 10.1016/j.bbamem.2008.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/26/2022]
|
5
|
Janas T, Krajiński H, Janas T. Electromigration of polyion homopolymers across biomembranes: a biophysical model. Biophys Chem 2000; 87:167-78. [PMID: 11099179 DOI: 10.1016/s0301-4622(00)00189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The analysis of polyion transmembrane translocation was performed using membrane electrical equivalent circuit. The dependence of polyion flux across membranes on time, membrane electrical conductance, membrane electrical capacitance, degree of polymerization, water solution conductance and applied transmembrane potential is discussed. The changes in polyion flux were up to 88% after 1 ms. Both the increase of polyion chain length and the decrease of membrane conductance resulted in the diminution of this effect. Inversion of flux direction was observed as a result of external potential changes. Reversal curves, representing the values of considered parameters for zero-flux were also shown. The replacement of a polyanion by a polycation of the same chain length resulted in the same shape of the surface plot but with opposite orientation. The analysis describes the effect of transmembrane potential on the translocation rate of polyanionic polysialic acid and polynucleotides, and polycationic peptides across membranes.
Collapse
Affiliation(s)
- T Janas
- Department of Physics, Technical University, Zielona Góra, Poland
| | | | | |
Collapse
|
6
|
Janas T, Walińska K, Chojnacki T, Swiezewska E, Janas T. Modulation of properties of phospholipid membranes by the long-chain polyprenol (C(160)). Chem Phys Lipids 2000; 106:31-40. [PMID: 10878233 DOI: 10.1016/s0009-3084(00)00129-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electrical measurements of phospholipid bilayers and the studies of phospholipid vesicles by using the transmission electron microscopy (TEM) showed that dotriacontaprenol (C(160)) isolated from leaves of Spermatophyta influences some properties of membranes. The current-voltage characteristics, the membrane conductance-temperature relationships, the membrane breakdown voltage and the membrane capacitance have been measured for different mixtures of C(160)/DOPC. The membrane conductance, the activation energy of ion migration across the membrane and the membrane thickness were determined. Dotriacontaprenol decreases the membrane breakdown voltage, the activation energy and the membrane capacitance, and increases the membrane conductance and the membrane hydrophobic thickness. The analysis of TEM micrographs shows several characteristic structures, which have been described. The results indicate that dotriacontaprenol increases the membrane elasticity and modulates the surface curvature of the membranes by the formation of fluid microdomains. We suggest that the long polyprenols facilitate the formation of transmembrane, ions-conductive pores.
Collapse
Affiliation(s)
- T Janas
- Department of Physics, Technical University, Podgórna 50, 65-246, Zielona Góra, Poland
| | | | | | | | | |
Collapse
|
7
|
Janas T, Walińska K. The effect of hexadecaprenyl diphosphate on phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:273-83. [PMID: 10727614 DOI: 10.1016/s0005-2736(00)00154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we investigated phospholipid bilayer membranes and phospholipid vesicles made from dioleoylphosphatidylcholine (DOPC) or its mixture with the phosphate ester derivative of long-chain polyprenol (hexadecaprenyl diphosphate, C(80)-PP) by electrophysiological and transmission electron microscopy (TEM) techniques. The membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C(80)-PP/DOPC. The current-voltage characteristics, the membrane conductance, the activation energy of ion migration across the membrane and the membrane breakdown voltage were determined. Hexadecaprenyl diphosphate decreases the membrane conductance, increases the activation energy and the membrane breakdown voltage for the various values of C(80)-PP/DOPC mole ratio. The analysis of TEM micrographs shows several characteristic structures, which have been described. The data indicate that hexadecaprenyl diphosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. The properties of modified membranes can result from the presence of the negative charges in the hydrophilic part of C(80)-PP molecules and can be modulated by the concentration of this compound in membranes. We suggest that the dynamics and conformation of hexadecaprenyl diphosphate in membranes depend on the transmembrane electrical potential.
Collapse
Affiliation(s)
- T Janas
- Department of Biophysics, Pedagogical University, Monte Cassino 21 B, 65-561, Zielona Góra, Poland.
| | | |
Collapse
|