1
|
Bramono DS, Murali S, Rai B, Ling L, Poh WT, Lim ZX, Stein GS, Nurcombe V, van Wijnen AJ, Cool SM. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone 2012; 50:954-64. [PMID: 22227436 PMCID: PMC3589980 DOI: 10.1016/j.bone.2011.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 11/29/2022]
Abstract
Lowering the efficacious dose of bone morphogenetic protein-2 (BMP-2) for the repair of critical-sized bone defects is highly desirable, as supra-physiological amounts of BMP-2 have an increased risk of side effects and a greater economic burden for the healthcare system. To address this need, we explored the use of heparan sulfate (HS), a structural analog of heparin, to enhance BMP-2 activity. We demonstrate that HS isolated from a bone marrow stromal cell line (HS-5) and heparin each enhances BMP-2-induced osteogenesis in C2C12 myoblasts through increased ALP activity and osteocalcin mRNA expression. Commercially available HS variants from porcine kidney and bovine lung do not generate effects as great as HS5. Heparin and HS5 influence BMP-2 activity by (i) prolonging BMP-2 half-life, (ii) reducing interactions between BMP-2 with its antagonist noggin, and (iii) modulating BMP2 distribution on the cell surface. Importantly, long-term supplementation of HS5 but not heparin greatly enhances BMP-2-induced bone formation in vitro and in vivo. These results show that bone marrow-derived HS effectively supports bone formation, and suggest its applicability in bone repair by selectively facilitating the delivery and bioavailability of BMP-2.
Collapse
Affiliation(s)
- Diah S. Bramono
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Sadasivam Murali
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Bina Rai
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Ling Ling
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Wei Theng Poh
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Zophia Xuehui Lim
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Victor Nurcombe
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Simon M. Cool
- Stem Cells and Tissue Repair Group, Institute of Medical Biology, A*STAR (Agency for Science Technology and Research), Biopolis, Singapore 138648
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
2
|
Warshaw AL, Lee KH, Napier TW, Fournier PO, Duchainey D, Axelrod L. Depression of serum calcium by increased plasma free fatty acids in the rat: a mechanism for hypocalcemia in acute pancreatitis. Gastroenterology 1985; 89:814-20. [PMID: 4029561 DOI: 10.1016/0016-5085(85)90577-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Some patients with hypertriglyceridemia and acute pancreatitis have marked hypocalcemia and high levels of plasma free fatty acids (FFAs). This study tests the hypothesis that increased plasma FFAs can significantly reduce the calcium level in vivo, a phenomenon which is different from local formation of calcium soaps due to lipolysis of adipose tissue lipids. Free fatty acid elevation was induced in rats by the administration of heparin and by the infusion of triglycerides. The results show that, compared with controls, induction of elevated FFA (from 1.57 +/- 0.08 mEq/L to 5.64 +/- 0.35, mean +/- SEM) causes the concentration of calcium to fall rapidly (from 9.04 +/- 0.06 mg/dl to 8.42 +/- 0.10, p less than 0.001). There is a significant (p less than 0.001) positive correlation between spontaneous baseline concentration of FFA and the responsiveness of calcium concentration to FFA challenge. At near-normal levels of FFA there is a significant (p less than 0.001) correlation between the magnitude of increased FFA concentration and decreased calcium concentration. Additional studies in vivo and in vitro show that elevated plasma triglycerides per se did not interfere with measurement of calcium concentration; however, FFA-albumin complexes bind calcium and lower its measured value. These findings suggest that (a) changes in the concentration of FFA occurring spontaneously may affect measured serum calcium concentration; (b) the observed depression of serum calcium concentration may be due in part to intravascular sequestration of calcium by FFA, but increased flux of circulating calcium-FFA complexes into extravascular and intracellular sites may also be important; (c) the markedly increased FFA concentration in some patients with acute pancreatitis may contribute significantly to hypocalcemia and calcium flux in these patients. As parathyroid hormone secretion, function, or integrity may be impaired in pancreatitis, the depressant effect of FFA could be even greater in that disease than in this model.
Collapse
|