1
|
Zang T, Wang Y, Zhang F, Zhang X, Cao Y, Jing J, Zhang R, Zhang X. Molecular Design Strategy of Protein Isoform-Specific Fluorescent Probes by Considering Molecule in Its Entirety. Anal Chem 2023; 95:13438-13445. [PMID: 37649365 DOI: 10.1021/acs.analchem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Generally, different isoforms of proteins exert separate biological functions. However, due to similar structures and identical catalysis functions, distinguishing isoforms is challenging. Summarizing a molecular design strategy has great significance in developing a protein-specific fluorescent probe. Usually, recognition of a group was deemed to be the key to a protein isoform-specific response. However, some novel literature reported that fluorophore could play a vital role in the protein isoform-specific response. It means that any part of the fluorescent probe could affect the detected properties. In this work, we report the generation of the first probe to specifically recognize HexA(β-N-acetylhexosaminidase A), Hex-C4, by adjusting the length of the linker. Hex-C4 exhibits specific recognition of HexA both in vitro and in living cells. The integration of the fluorescent spectrum and the MD (molecular dynamics) results provide two factors for the molecular design of isoform-specific fluorescent probes. One is the interaction between tetraphenyl ethylene (AIE fluorogen) and amino acid residues, and the other is the interaction between amino acid residues and the binding group. In this work, a powerful tool to detect HexA in living cells is reported for the first time. Further, a workable molecular design strategy for protein isoform-specific fluorescent probes is summarized.
Collapse
Affiliation(s)
- Tienan Zang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yunpeng Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaoli Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuan Cao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
2
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
3
|
Wang Y, Mu S, Li S, Fu G, Liu X, Gao H, Zhang H. A fluorescent probe for bioimaging of Hexosaminidases activity and exploration of drug-induced kidney injury in living cell. Talanta 2021; 228:122189. [PMID: 33773709 DOI: 10.1016/j.talanta.2021.122189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
Hexosaminidases (Hexs) as an exoglycosidase participates in the catalytic hydrolysis of non-reducing end of glycoconjugates in the biological system. The fluctuation of Hexs level could cause many hereditary neurodegenerative diseases such as Tay-Sachs and Sandhoff. The Hexs activity is significantly up-regulated in colorectal cancer and kidney injury tissue so that it is particularly important to construct a fluorescent probe with significant signal change to understand its physiological role. In this work, DyOH was selected as fluorophore scaffolds to synthesize probe Hex-1 for detection of Hexs with good water solubility, high specificity, large stokes shift and quick response. Hex-1 can sensitively detect Hexs with the low detection limit (0.025 mU mL-1) in vitro by "naked eye" due to superior spectral properties of DyOH. Furthermore, Hex-1 was not only employed for imaging Hexs in living cells with low toxicity, but also successfully applied to evaluate the fluctuation of Hexs activity during drug induced kindey injury in living HK-2 cells. These results indicated that Hex-1 could be used as a potential image tool to further explore the pathogenesis of kidney disease and cancer.
Collapse
Affiliation(s)
- Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guoqing Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Lahey HG, Webber CJ, Golebiowski D, Izzo CM, Horn E, Taghian T, Rodriguez P, Batista AR, Ellis LE, Hwang M, Martin DR, Gray-Edwards H, Sena-Esteves M. Pronounced Therapeutic Benefit of a Single Bidirectional AAV Vector Administered Systemically in Sandhoff Mice. Mol Ther 2020; 28:2150-2160. [PMID: 32592687 DOI: 10.1016/j.ymthe.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme β-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.
Collapse
Affiliation(s)
- Hannah G Lahey
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chelsea J Webber
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Diane Golebiowski
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cassandra M Izzo
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Horn
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Toloo Taghian
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paola Rodriguez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren E Ellis
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Heather Gray-Edwards
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Beegle J, Hendrix K, Maciel H, Nolta JA, Anderson JS. Improvement of motor and behavioral activity in Sandhoff mice transplanted with human CD34+ cells transduced with a HexA/HexB expressing lentiviral vector. J Gene Med 2020; 22:e3205. [PMID: 32335981 DOI: 10.1002/jgm.3205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tay-Sachs and Sandhoff disease are debilitating genetic diseases that affect the central nervous system leading to neurodegeneration through the accumulation of GM2 gangliosides. There are no cures for these diseases and treatments do not alleviate all symptoms. Hematopoietic stem cell gene therapy offers a promising treatment strategy for delivering wild-type enzymes to affected cells. By genetically modifying hematopoietic stem cells to express wild-type HexA and HexB, systemic delivery of functional enzyme can be achieved. METHODS Primary human hematopoietic stem/progenitor cells and Tay-Sachs affected cells were used to evaluate the functionality of the vector. An immunodeficient and humanized mouse model of Sandhoff disease was used to evaluate whether the HexA/HexB lentiviral vector transduced cells were able to improve the phenotypes associated with Sandhoff disease. An immunodeficient NOD-RAG1-/-IL2-/- (NRG) mouse model was used to evaluate whether the HexA/HexB vector transduced human CD34+ cells were able to engraft and undergo normal multilineage hematopoiesis. RESULTS HexA/HexB lentiviral vector transduced cells demonstrated strong expression of HexA and HexB and restored enzyme activity in Tay-Sachs affected cells. Upon transplantation into a humanized Sandhoff disease mouse model, improved motor and behavioral skills were observed. Decreased GM2 gangliosides were observed in the brains of HexA/HexB vector transduced cell transplanted mice. Increased peripheral blood levels of HexB was also observed in transplanted mice. Normal hematopoiesis in the peripheral blood and various lymphoid organs was also observed in transplanted NRG mice. CONCLUSIONS These results highlight the potential use of stem cell gene therapy as a treatment strategy for Tay-Sachs and Sandhoff disease.
Collapse
Affiliation(s)
- Julie Beegle
- University of California Davis, Sacramento, CA, USA
| | - Kyle Hendrix
- University of California Davis, Sacramento, CA, USA
| | - Haley Maciel
- University of California Davis, Sacramento, CA, USA
| | - Jan A Nolta
- University of California Davis, Sacramento, CA, USA
| | | |
Collapse
|
6
|
Wang Q, Li C, Chen Q, Zhang P, Wang D, Kang M, Jiang G, Wang J. Lysosome-Targeting Red-Emitting Aggregation-Induced Emission Probe with Large Stokes Shift for Light-Up in Situ Visualization of β- N-Acetylhexosaminidase. Anal Chem 2019; 91:12611-12614. [PMID: 31558016 DOI: 10.1021/acs.analchem.9b03832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal β-N-acetylhexosaminidase (Hex) has been reported to possess unique physiological performances. Detection and visualization of Hex in lysosome will be favorable to reveal the basis of its functions. However, Hex-specific fluorescent probes are rarely reported. In this study, we reported the first lysosome-targeting Hex-lighting-up aggregation-induced emission (AIE)-active fluorescent probe (GlcNAc-TPE) with remarkably large Stokes shift and high sensitivity and selectivity. GlcNAc-TPE can selectively locate in lysosome and visualize endogenous Hex in live HCT116 cells and in live mice with high stability and good biocompatibility, providing a useful AIE probe for real-time visualization of Hex in live samples.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , P. R. China.,Key Laboratory of Organo-Pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Chunbin Li
- Key Laboratory of Organo-Pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China.,Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Qingqing Chen
- College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , P. R. China.,Key Laboratory of Organo-Pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , P. R. China.,Key Laboratory of Organo-Pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , P. R. China.,Key Laboratory of Organo-Pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| |
Collapse
|
7
|
Haematopoietic Stem Cell Transplantation Arrests the Progression of Neurodegenerative Disease in Late-Onset Tay-Sachs Disease. JIMD Rep 2017; 41:17-23. [PMID: 29214523 DOI: 10.1007/8904_2017_76] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED Tay-Sachs disease is a rare metabolic disease caused by a deficiency of hexosaminidase A that leads to accumulation of GM2 gangliosides predominantly in neural tissue. Late-onset Tay-Sachs disease variant is associated with a higher level of residual HexA activity. Treatment options are limited, and there are a few described cases who have undergone haematopoietic stem cell transplantation (HSCT) with variable outcome.We describe a case of a 23-year-old male patient who presented with a long-standing tremor since 7 years of age. He had gait ataxia, a speech stammer and swallowing problems. His condition had had a static course apart from his tremor that had been gradually deteriorating. Because of the deterioration in his neurological function, the patient had an uneventful, matched-sibling donor bone marrow transplant at the age of 15 years. Eight years post-HSCT, at the age of 23, he retains full donor engraftment, and his white cell beta-HexA of 191 nmol/mg/h is comparable to normal controls (in-assay control = 187). He continues to experience some intentional tremor that is tolerable for daily life and nonprogressive since HSCT. CONCLUSION HSCT is a potential treatment option which might arrest neurodegeneration in patients with LOTS.
Collapse
|
8
|
Matsuzaki H, Kamiya M, Iwatate RJ, Asanuma D, Watanabe T, Urano Y. Novel Hexosaminidase-Targeting Fluorescence Probe for Visualizing Human Colorectal Cancer. Bioconjug Chem 2016; 27:973-81. [PMID: 27009615 DOI: 10.1021/acs.bioconjchem.6b00037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precise tumor diagnosis and evaluation of disease extent are crucial for treatment of solid cancers. In order to complement the limited ability of the unaided human eye to discriminate tumor tissue and normal tissue, we have developed a series of fluorescence probes activatable specifically in cancer tissues. Here, we describe the design, synthesis, and application of a new fluorescence probe targeting hexosaminidase (HMRef-βGlcNAc), which is located in lysosomes and is overexpressed in several carcinomas, including colorectal cancer. This probe could sensitively detect intracellular hexosaminidase activity in human colorectal cancer cell lines, and could visualize tiny metastatic nodules (smaller than 1 mm) in a mouse model of disseminated human peritoneal colorectal cancer (HCT116). In human colorectal cancer specimens obtained at surgery, the probe showed high tumor sensitivity/specificity, together with a high tumor-to-normal signal ratio. HMRef-βGlcNAc is a promising candidate for clinical application during surgical or endoscopic procedures to treat colorectal cancer.
Collapse
Affiliation(s)
- Hiroyuki Matsuzaki
- Department of Surgical Oncology, The University of Tokyo Hospital , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mako Kamiya
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Toshiaki Watanabe
- Department of Surgical Oncology, The University of Tokyo Hospital , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasuteru Urano
- CREST, Japan Agency for Medical Research and Development , 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
9
|
Baker DJ, Blackburn DJ, Keatinge M, Sokhi D, Viskaitis P, Heath PR, Ferraiuolo L, Kirby J, Shaw PJ. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2015; 9:410. [PMID: 26528138 PMCID: PMC4606544 DOI: 10.3389/fncel.2015.00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1G93A mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1G93A vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1G93A spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1G93A astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies.
Collapse
Affiliation(s)
- David J Baker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Daniel J Blackburn
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Marcus Keatinge
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Dilraj Sokhi
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Paulius Viskaitis
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Laura Ferraiuolo
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| |
Collapse
|
10
|
Taranta-Janusz K, Zalewska-Szajda B, Gościk E, Chojnowska S, Dmochowska M, Pszczółkowska M, Wasilewska A. New tubular injury markers in children with a solitary functioning kidney. Pediatr Nephrol 2014; 29:1599-605. [PMID: 24651943 PMCID: PMC4147209 DOI: 10.1007/s00467-014-2802-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The present study aimed to assess whether the urinary profiles of the lysosomal exoglycosidases N‑acetyl‑β‑hexosaminidase (HEX) and its isoenzymes A (HEX A) and B (HEX B), α-fucosidase (FUC), β-galactosidase (GAL), α-mannosidase (MAN), and β- glucuronidase (GLU) are useful biomarkers of tubular dysfunction in children with a solitary functioning kidney (SFK). METHODS We measured the urinary activity of HEX, its isoenzymes HEX A, HEX B, and FUC, GAL, MAN, and GLU in 52 patients with SFK. Patients were subdivided into two groups: congenital SFK (cSFK)-unilateral renal agenesis and acquired SFK (aSFK)-unilateral nephrectomy. The reference group (RG) contained 60 healthy sex- and age-matched children. RESULTS Urinary activity of all exoglycosidases in SFK was significantly higher than in RG (p < 0.05). There were no differences in exoglycosidase activity between cSFK and aSFK (p > 0.05). HEX and its isoenzymes HEX A and HEX B correlated negatively with estimated glomerular filtration rate (eGFR), and all estimated parameters correlated positively with albumin/creatinine ratio (p < 0.001). CONCLUSION Urinary activity of HEX, its isoenzymes HEX A and HEX B, and FUC, GAL, MAN, and GLU is elevated in children with SFK. Long-term follow-up studies in larger groups of children with SFK may help us to better understand their clinical significance.
Collapse
Affiliation(s)
- Katarzyna Taranta-Janusz
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-274, Białystok, Waszyngtona 17, Poland,
| | - Beata Zalewska-Szajda
- Department of Imaging Diagnostics, Medical University of Białystok, Children Hospital, Białystok, Poland
| | - Elżbieta Gościk
- Department of Imaging Diagnostics, Medical University of Białystok, Children Hospital, Białystok, Poland
| | - Sylwia Chojnowska
- Medical Institute, College of Computer Science and Business Administration of Lomza, Lomza, Poland
| | - Małgorzata Dmochowska
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-274 Białystok, Waszyngtona 17 Poland
| | - Marta Pszczółkowska
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-274 Białystok, Waszyngtona 17 Poland
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-274 Białystok, Waszyngtona 17 Poland
| |
Collapse
|
11
|
Abstract
Exoglycosidases are hydrolases involved in lysosomal degradation of oligosaccharide chains of glycoconjugates (glycoproteins, glycolipids and proteoglycans). In tissues and body fluids, a higher exoglycosidase specific activity is found in N-acetyl-β-hexosaminidase, than β-glucuronidase, α-L-fucosidase, β-galactosidase, α-mannosidase and α-glucosidase. Determination of exoglycosidases (especially N-acetyl-β-hexosaminidase and β-glucuronidase) in body fluids could be an inexpensive, easy to perform and sensitive test for pathological evaluation, as well as in screening and monitoring many diseases, including alcohol abuse, risk of arteriosclerosis, bacterial infections (e.g. Lyme borreliosis), chronic inflammatory processes, such as rheumatoid arthritis and juvenile idiopathic arthritis, asthma, autoimmune hepatitis and primary biliary cirrhosis, as well as cancers.
Collapse
|
12
|
Purification and Characterization of a Liver-derived β-N-Acetylhexosaminidase from Marine Mammal Sotalia fluviatilis. Protein J 2010; 29:188-94. [DOI: 10.1007/s10930-010-9239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Andersson SV, Edman MC, Bekmezian A, Holmberg J, Mircheff AK, Gierow JP. Characterization of β-hexosaminidase secretion in rabbit lacrimal gland. Exp Eye Res 2006; 83:1081-8. [PMID: 16839547 DOI: 10.1016/j.exer.2006.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/23/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
The present study was aimed at validating the use of the lysosomal enzyme beta-hexosaminidase as a marker of secretory function in cultured rabbit lacrimal gland acinar cells. The secretory response and morphological characteristics of isolated acinar cells cultured in a serum-free medium supplemented with an extracellular matrix extract were monitored over time as part of optimization of our culturing protocol. Secreted beta-hexosaminidase activity was analyzed and compared with that of another lysosomal enzyme, cathepsin B, as well as protein secreted into the media, w or w/o the presence of secretagogues or protein kinase C activators and inhibitors. Lacrimal gland fluid was obtained from pilocarpine stimulated rabbits, and the activities of beta-hexosaminidase and cathepsin B were measured. A membrane fraction and a soluble fraction were obtained from isolated acinar cells and used for kinetic studies of beta-hexosaminidase in comparison with that released from cultured cells, in the lacrimal gland fluid and in serum. Optimal secretory response was obtained when the cells had been in culture for 2-3 days, coinciding with the formation of acinus-like structures. Stimulation of the cultured cells by carbachol or phorbol esters resulted in a more than 3-fold increase of beta-hexosaminidase release over basal, whereas no effect on cathepsin B release could be detected. Treatment with the protein kinase C inhibitor, chelerythrine chloride, significantly decreased the carbachol and phorbol ester-stimulated secretion. Cathepsin B could not be detected in rabbit lacrimal fluid, but beta-hexosaminidase was easily measured in quantities corresponding to as low as 0.4 microl of tear fluid. Using 4-methylumbelliferyl N-acetyl-beta-D-glucosaminide as a substrate for beta-hexosaminidase, the K(m) in lacrimal gland fluid (1.22+/-0.15 mM) was not significantly different from that of the membrane-associated fraction, the soluble fraction, rabbit serum or activity secreted from cultured cells. Beta-hexosaminidase is secreted by rabbit lacrimal gland, in vivo, and by acinar cells in primary culture, whereas cathepsin B is not secreted under the conditions described. Beta-hexosaminidase therefore provides a versatile marker for secretion in studies of tear production utilizing the rabbit as a model. Our results also indicate that PKC is an important regulator of rabbit lacrimal gland secretion.
Collapse
Affiliation(s)
- Sofia V Andersson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Smalandsgatan 24, SE-39182 Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC. Purification, Characterization, and Cloning of a Spodoptera frugiperda Sf9 β-N-Acetylhexosaminidase That Hydrolyzes Terminal N-Acetylglucosamine on the N-Glycan Core. J Biol Chem 2006; 281:19545-60. [PMID: 16684772 DOI: 10.1074/jbc.m603312200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.
Collapse
Affiliation(s)
- Noboru Tomiya
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Casal JA, Vizcaíno L, Garcia-Devesa J, Tutor JC. Thermodynamic study of beta-N-acetylhexosaminidase enzyme heterogeneity in human seminal plasma. Clin Chim Acta 2005; 355:55-60. [PMID: 15820478 DOI: 10.1016/j.cccn.2004.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/08/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND It has been suggested that the activity of beta-N-acetylhexosaminidase (Hex) in seminal plasma may be used as a biochemical marker of azoospermia. The purpose of our study was to evaluate this hypothesis using a thermodynamic procedure developed to determine total Hex activity and that of its isoenzymes in this biological fluid. METHODS Using the substrate 3,3'-dichlorophenolsulphoftaleinil N-acetyl-beta-D-glucosaminide, a highly significant difference (p<0.001) is found between the activation energy of Hex A (41.5 kJ/mol) and of Hex B (72.3 kJ/mol), making it possible to determine the activity of these isoenzymes from the apparent activation energy of the total Hex in seminal plasma. RESULTS A significant difference between the normozoospermic and azoospermic groups was only found for Hex A isoenzyme activity (p<0.05), although with considerable overlapping between the values of both groups. Significant partial correlations were found for the total Hex, Hex A and Hex B activities with the immobile spermatozoa count (p<0.01) and for total Hex and Hex B with the dead spermatozoa count (p<0.05). In turn, Hex A had a significant partial correlation with the live spermatozoa count (p<0.05); however, Hex activity in seminal plasma of acromosomal origin appears to be of little importance in quantitative terms. CONCLUSIONS It was not possible to confirm that total Hex activity in seminal plasma, or even of its isoenzymes Hex A and Hex B, is a suitable biochemical marker of azoospermia (efficiency< or =67%). The thermodynamic procedure described may be a useful alternative for the study of the Hex enzyme heterogeneity in spermatozoa.
Collapse
Affiliation(s)
- J Antonio Casal
- Laboratorio Central, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
16
|
Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005; 14:2387-98. [PMID: 16000318 DOI: 10.1093/hmg/ddi240] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaucher disease (GD), an autosomal recessive disease, is characterized by accumulation of glucosylceramide mainly in cells of the reticuloendothelial system, due to mutations in the acid beta-glucocerebrosidase gene. Some of the patients suffer from neurological symptoms (type 2 and type 3 patients), whereas patients with type 1 GD do not present neurological signs. The disease is heterogeneous even among patients with the same genotype, implicating that a mutation in the glucocerebrosidase gene is required to cause GD but other factors play an important role in the manifestation of the disease. Glucocerebrosidase is a lysosomal enzyme, synthesized on endoplasmic reticulum (ER)-bound polyribosomes and translocated into the ER. Following N-linked glycosylations, it is transported to the Golgi apparatus, from where it is trafficked to the lysosomes. In this study, we tested glucocerebrosidase protein levels, N-glycans processing and intracellular localization in skin fibroblasts derived from patients with GD. Our results strongly suggest that mutant glucocerebrosidase variants present variable levels of ER retention and undergo ER-associated degradation in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity.
Collapse
Affiliation(s)
- Idit Ron
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
17
|
Wicklow BA, Ivanovich JL, Plews MM, Salo TJ, Noetzel MJ, Lueder GT, Cartegni L, Kaback MM, Sandhoff K, Steiner RD, Triggs-Raine BL. Severe subacute GM2 gangliosidosis caused by an apparently silent HEXA mutation (V324V) that results in aberrant splicing and reduced HEXA mRNA. Am J Med Genet A 2005; 127A:158-66. [PMID: 15108204 DOI: 10.1002/ajmg.a.20633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have characterized the molecular basis of beta-hexosaminidase A (HEX A) deficiency in a patient ascertained through an ophthalmologic examination that revealed cherry red spots on his retina. The absence of neurological deficit in this child until 3 3/4 years of age indicated residual HEX A must be present. Three HEXA mutations, 10T > C (S4P) and 972T > A (V324V) on the maternal allele, and 1A > T (M1L) on the paternal allele were identified. The effects of the amino acid substitutions on HEX A expressed in COS-7 cells were analyzed; as expected, no HEX A activity was associated with the M1L mutation but surprisingly, the S4P mutation resulted in 59% of the HEX A activity expressed by the wild type cDNA. The effect of the S4P change was much less than that of another HEXA mutation, G269S, associated with an adult onset form of G(M2) gangliosidosis. This indicated that the S4P change was not the cause of disease and suggested that one of the mutations on the maternal allele, 10T > C or 972T > A, had its effect at the mRNA level. This was confirmed by Northern blot analysis that showed only 7% of the normal level of HEXA mRNA in proband fibroblasts. Analysis of the residual mRNA by RT/PCR and sequencing revealed normal transcripts from both the maternal and paternal allele, as well as a low abundance aberrant transcript from the maternal allele. Sequencing of this aberrant transcript revealed a new exon 8 donor site created by the 972T > A mutation that resulted in a 17 bp deletion and destabilization of the resulting abnormal transcript. The remaining normal mRNA produced from the 972T > A allele must account for the delayed onset of clinical symptoms in this child.
Collapse
Affiliation(s)
- Brandy A Wicklow
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E OW3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 2004; 187:30-7. [PMID: 15081585 DOI: 10.1016/j.expneurol.2004.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/19/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).
Collapse
Affiliation(s)
- Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5525, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Miranda PV, González-Echeverría F, Blaquier JA, Mahuran DJ, Tezón JG. Evidence for the participation of beta-hexosaminidase in human sperm-zona pellucida interaction in vitro. Mol Hum Reprod 2000; 6:699-706. [PMID: 10908279 DOI: 10.1093/molehr/6.8.699] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm-zona pellucida (ZP) interaction is mediated by sperm lectin-like proteins and ZP glycoproteins. We have previously reported the participation of binding sites for N-acetylglucosamine (GlcNAc) residues in human sperm function, including sperm interaction with the ZP. Additionally, previous results from our laboratory suggested that some of these events may be mediated by the glycosidase N-acetylglucosaminidase (beta-hexosaminidase, Hex, in mammals). In this study, we report the possible participation of Hex in human sperm-ZP interaction. Human recombinant Hex (hrHex) was obtained by expression in a stable transfected CHO cell line. When the recombinant enzyme was present during hemizona (HZ) assays, the number of sperm bound per HZ was significantly reduced. The same result was obtained when HZ were preincubated with hrHex. Additionally, the presence of a Hex-specific substrate during the HZ assay produced the same inhibitory effect. These results suggest the participation of a sperm Hex in the interaction with human ZP in vitro.
Collapse
Affiliation(s)
- P V Miranda
- Instituto de Biología y Medicina Experimental (CONICET), Buenos Aires, Fertilab, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Strasberg P, Warren I, Skomorowski MA, Feigenbaum A. Homozygosity for the common Ashkenazi jewish Tay-Sachs +1 IVS-12 splice-junction mutation: first report. Hum Mutat 2000; 10:82-3. [PMID: 9222766 DOI: 10.1002/(sici)1098-1004(1997)10:1<82::aid-humu13>3.0.co;2-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P Strasberg
- Division of Clinical Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:105-38. [PMID: 10571007 DOI: 10.1016/s0925-4439(99)00074-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrolysis of GM2-ganglioside is unusual in its requirements for the correct synthesis, processing, and ultimate combination of three gene products. Whereas two of these proteins are the alpha- (HEXA gene) and beta- (HEXB) subunits of beta-hexosaminidase A, the third is a small glycolipid transport protein, the GM2 activator protein (GM2A), which acts as a substrate specific co-factor for the enzyme. A deficiency of any one of these proteins leads to storage of the ganglioside, primarily in the lysosomes of neuronal cells, and one of the three forms of GM2-gangliosidosis, Tay-Sachs disease, Sandhoff disease or the AB-variant form. Studies of the biochemical impact of naturally occurring mutations associated with the GM2 gangliosidoses on mRNA splicing and stability, and on the intracellular transport and stability of the affected protein have provided some general insights into these complex cellular mechanisms. However, such studies have revealed little in the way of structure-function information on the proteins. It appears that the detrimental effect of most mutations is not specifically on functional elements of the protein, but rather on the proteins' overall folding and/or intracellular transport. The few exceptions to this generalization are missense mutations at two codons in HEXA, causing the unique biochemical phenotype known as the B1-variant, and one codon in both the HEXB and GM2A genes. Biochemical characterization of these mutations has led to the localization of functional residues and/or domains within each of the encoded proteins.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, The Hospital for Sick Children, Toronto, Ont, Canada.
| |
Collapse
|
22
|
Guidotti JE, Mignon A, Haase G, Caillaud C, McDonell N, Kahn A, Poenaru L. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice. Hum Mol Genet 1999; 8:831-8. [PMID: 10196372 DOI: 10.1093/hmg/8.5.831] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The severe neurodegenerative disorder, Tays-Sachs disease, is caused by a beta-hexosaminidase alpha-subunit deficiency which prevents the formation of lysosomal heterodimeric alpha-beta enzyme, hexosaminidase A (HexA). No treatment is available for this fatal disease; however, gene therapy could represent a therapeutic approach. We previously have constructed and characterized, in vitro, adenoviral and retroviral vectors coding for alpha- and beta-subunits of the human beta-hexosaminidases. Here, we have determined the in vivo strategy which leads to the highest HexA activity in the maximum number of tissues in hexA -deficient knock-out mice. We demonstrated that intravenous co-administration of adenoviral vectors coding for both alpha- and beta-subunits, resulting in preferential liver transduction, was essential to obtain the most successful results. Only the supply of both subunits allowed for HexA overexpression leading to massive secretion of the enzyme in serum, and full or partial enzymatic activity restoration in all peripheral tissues tested. The enzymatic correction was likely to be due to direct cellular transduction by adenoviral vectors and/or uptake of secreted HexA by different organs. These results confirmed that the liver was the preferential target organ to deliver a large amount of secreted proteins. In addition, the need to overexpress both subunits of heterodimeric proteins in order to obtain a high level of secretion in animals defective in only one subunit is emphasized. The endogenous non-defective subunit is otherwise limiting.
Collapse
Affiliation(s)
- J E Guidotti
- Institut Cochin de Génétique Moléculaire (ICGM), INSERM U129 and CHU Cochin-Port Royal, 24 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pérez LF, Tutor JC. Assay of β-N-acetylhexosaminidase isoenzymes in different biological specimens by means of determination of their activation energies. Clin Chem 1998. [DOI: 10.1093/clinchem/44.2.226] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe activation energy (Ea) of β-N-acetylhexosaminidase (Hex, EC 3.2.1.52) was determined with 3,3′-dichlorophenylsulfonphthaleinyl-N-acetyl-β-d-glucosaminide as substrate, with a much higher value being found for the Hex B isoenzyme (Ea = 75.1 kJ/mol) than for the Hex A isoenzyme (Ea = 41.8 kJ/mol). This fact allowed for the development of a fast and reliable thermodynamic method to determine the isoenzyme composition of Hex in different biological specimens (serum/plasma, saliva, cerebrospinal fluid, seminal plasma, urine, and leukocyte lysates). The results in serum given by the proposed method may be superimposed upon those obtained by the heat inactivation assay of O’Brien et al. (N Engl J Med 1970;273:15–20), and the catalytic activity calculated for Hex A offers a good correlation with that obtained by using the specific substrate 4-methylumbelliferyl-N-acetyl-β-d-glucosaminide-6 sulfate (n = 25, r = 0.953).
Collapse
|
24
|
Pérez LF, Tutor JC. Assay of serum/plasma beta-N-acetylhexosaminidase isoenzymes by heat inactivation using a continuous spectrophotometric method adapted to a centrifugal analyzer. EUROPEAN JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY : JOURNAL OF THE FORUM OF EUROPEAN CLINICAL CHEMISTRY SOCIETIES 1997; 35:445-52. [PMID: 9228328 DOI: 10.1515/cclm.1997.35.6.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activity of serum/plasma beta-N-acetylhexosaminidase (EC 3.2.1.52) was determined by means of a continuous spectrophotometric method using 3,3'-dichlorophenylsulphonphthaleinyl-N-acetyl-beta-D-glucosaminid e as substrate, with very satisfactory results. Incubation of an undiluted aliquot (1 ml) of samples at 52 degrees C for 8 hours with an adjusted pH 5.5-6.0 provoked only the inactivation of isoenzyme A, thus allowing the evaluation of beta-N-acetylhexosaminidase isoenzyme composition. In 25 serum samples from control subjects and pregnant women, a good correlation between the percentage of isoenzyme B obtained by this procedure and the fluorimetric assay of O'Brien et al. (New Engl J Med 1970; 273:15-20) was found (r = 0.983, S(yx) = 1.51), with no statistically significant difference between the means (43.2 vs 42.8%). In 84 healthy adult subjects, an average value of 30.3% for the proportion of isoenzyme B was obtained, with an interval of 25.4-35.0%, in agreement with results reported by other authors.
Collapse
Affiliation(s)
- L F Pérez
- Laboratorio Central, Hospital General de Galicia-Clínico Universitario, Santiago de Compostela, Spain
| | | |
Collapse
|
25
|
Beutler E, West C, Gelbart T. HLA-H and Associated Proteins in Patients with Hemochromatosis. Mol Med 1997. [DOI: 10.1007/bf03401686] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|