1
|
Tzeng BC, Wu YT, Sun BJ, Chang AHH, Chien SY. Mechanochromic and Solvent-Induced Luminescence of a Supramolecular Pt(II)-Bipyridine Complex with Di(4-pyridylmethyl)aminedithiocarbamate. Inorg Chem 2024; 63:18589-18595. [PMID: 39316829 DOI: 10.1021/acs.inorgchem.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
[Pt(bpy)(DPMACS2)]2Cl2•3H2O (1•3H2O) (bpy = 2,2'-bipyridine, DPMACS2 = di(4-pyridylmethyl)aminedithiocarbamate) was synthesized and characterized by X-ray diffraction studies, and its crystal structure displayed intermolecular Pt(II)···Pt(II) contacts of 3.471 and 5.065 Å. Upon excitation, 1•3H2O showed broad luminescence at 538 nm, which was red-shifted and enhanced to 560 nm while cooling to 77 K. To this end, the B3LYP/LanL2DZ calculation results were performed to clearly explain their excited-state origin. Moreover, complex 1•3H2O displayed a dramatic mechanochromic shift from 538 to 608 nm while grinding, and the above red-shift was also observed while exposed to air within 1 day, suggestive of the simultaneous mechanochromic and solvent-induced luminescence. It is noted that the luminescence almost reverted to the original luminescence at 535-542 nm upon immersion in various solvents for the ground samples of complex 1•3H2O. In addition, the luminescence for the acetone-immersed ground samples returned to 608 nm in 1 min. The possible interactions between halogenated solvents and the free pyridyl groups in DPMACS2, which were not expected for acetone, have been proposed to be responsible for such a dramatic difference in this study.
Collapse
Affiliation(s)
- Biing-Chiau Tzeng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Ting Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi 62102, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Su-Ying Chien
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
2
|
Zhao S, Song J, Wong KMC. Multifunctional bisalkynylplatinum(II) bipyridine complexes with rhodamine-like ligands featuring near-infrared phosphorescence and delayed fluorescence. Chem Commun (Camb) 2023; 59:11272-11275. [PMID: 37664951 DOI: 10.1039/d3cc03775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A series of platinum(II) bipyridine complexes with two rhodamine-like alkynyl (Rhodyne) ligands were developed to show chemo-induced "ON-OFF" switching capabilities with exceptional near-infrared phosphorescence and delayed fluorescence. This study contributes to the design of versatile photosensitizers with multiple functionalities, including metal ion and biomolecule sensing, photodynamic therapy, and optoelectronics.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15001, China
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Jianfeng Song
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| |
Collapse
|
3
|
Lin J, Peng F, Xie M, Xia J, Chang X, Zou C, Lu W. Dicationic Diimine Pt(II) Bis( N-heterocyclic allenylidene) Complexes: Extended Pt···Pt Chains, NIR Phosphorescence, and Chromonics. Inorg Chem 2023. [PMID: 37146284 DOI: 10.1021/acs.inorgchem.2c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although square-planar Pt(II) complexes are well-known to self-assemble into supramolecules via noncovalent intermolecular Pt···Pt and/or π-π interactions, the self-assembly of dicationic Pt(II) complexes was scarce due to the electrostatic repulsive force. Herein, a series of dicationic diimine bis(N-heterocyclic allenylidene) Pt(II) complexes were synthesized and characterized. Close Pt···Pt and/or π-π contacts are observed in the crystals of these complexes. In particular, complexes 1·2PF6 and 2·2PF6 exhibit one-dimensional packing with extended Pt···Pt contacts of 3.302 and 3.240 Å, respectively. The photophysical properties of these complexes in the solution and solid state were investigated. NIR emission was recorded for complexes 1·2PF6 (λmax = 950 nm) and 2·2PF6 (λmax = 855 nm) in the solid state at 298 K. To explore the aggregate behaviors of these complexes, the counteranion PF6- was exchanged to the large lipophilic anion 2,3,4-tris(dodecyloxy)benzene sulfonate (LA-) and the hydrophilic anion Cl-. Complexes 1·2LA and 2·2LA or 1·2Cl and 2·2Cl could self-assemble with Pt···Pt and/or π-π interactions in the nonpolar or aqueous solutions as well. Further increasing the concentration of 1·2Cl and 2·2Cl in aqueous solution, chromonic mesophases with NIR emission (λmax = 988 nm) were obtained. DFT and TD-DFT calculations were performed to gain deep insight into the dication-dication packings and photophysical properties of the complexes. The σ-donating as well as π-accepting character of the N-heterocyclic allenylidene ligand endows complexes with rigid and electron-delocalized coplanar features, which are conducive to achieving the self-assembling processes associated with Pt···Pt and/or π-π interactions.
Collapse
Affiliation(s)
- Jinqiang Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Mo Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Jiuxu Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, P. R. China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
4
|
Tzeng BC, Liao CC, Jung PY, Chen SY, Sun BJ, Cheng WC, Chang AHH, Lee GH. Luminescent Pt(II) Complexes Containing (1-Aza-15-crown-5)dithiocarbamate and (1-Aza-18-crown-6)dithiocarbamate: Mechanochromic and Solvent-Induced Luminescence. Inorg Chem 2023; 62:916-929. [PMID: 36584668 DOI: 10.1021/acs.inorgchem.2c03726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The strong tendency to stack in the solid state and rich luminescence for the Pt(II) complexes makes them potential candidates as new mechanochromic materials and sensing applications. Six mononuclear complexes [Pt(ppy)(O4NCS2)] (1), [Pt(bpy)(O4NCS2)]ClO4 (2), [Pt(ppy)(O5NCS2)] (3), [Pt(phen)(O4NCS2)]ClO4·CH3OH (5a), [Pt(phen)(O4NCS2)]ClO4 (5b), and [Pt(phen)(O5NCS2)]ClO4 (6a), one dinuclear complex [Pt2(phen)2(NaO5NCS2)2(ClO4)3]ClO4 (6b), and one one-dimensional (1-D) coordination polymer {[Pt2(bpy)2(NaO5NCS2)2(ClO4)2](ClO4)2}n (4) were synthesized by reacting [Pt(ppy)Cl]2, Pt(bpy)Cl2, and Pt(phen)Cl2 (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline) with (1-aza-15-crown-5)dithiocarbamate (O4NCS2) or (1-aza-18-crown-6)dithiocarbamate (O5NCS2), respectively, which have been isolated and structurally characterized by X-ray diffraction. Neutral complexes 1 and 3 contain no intermolecular Pt(II)···Pt(II) contact, whereas cationic complexes 2, 5a, 5b, and 6a with ClO4- as counteranions show alternative intermolecular Pt(II)···Pt(II) contacts of 3.535/4.091, 3.480/5.001, 3.527/4.571, and 3.446/4.987 Å in the solid state, respectively. Interestingly, complex 4 forms a 1-D coordination polymer through coordination between the encapsulated Na+ ions inside the azacrown ether rings of O5NCS2 and ClO4- anions with respective intra- and intermolecular Pt(II)···Pt(II) contacts of 3.402 and 3.847 Å in crystal lattices, whereas a dinuclear complex 6b was surprisingly formed and also connected by the encapsulated Na+ ions and ClO4- anions with alternative intra- and intermolecular Pt(II)···Pt(II) contacts of 3.650 and 3.677/4.4.372 Å, respectively. Upon excitation, complexes 1 and 3 showed similar vibronic luminescence at 507, 534, and 502, 532 nm, respectively, and the other complexes 2 and 4-6 showed broad luminescence with maxima at 537-567 nm. The B3LYP/LanL2DZ calculation was carried out and used to clarify their excited-state properties. In addition, the powder samples for complexes 1-4 almost showed no energy shift for the luminescence and significantly those of complexes 5-6 exhibited the mechanochromic luminescence upon grinding. It is noted that complexes 5a and 6a only showed minor red shifts (i.e., from 544 to 556 nm for complex 5a and from 551 to 565 nm for complex 6a), whereas complex 6b exhibited a remarkable red shift from 558 to 603 nm upon grinding. Besides, their luminescence reversibility was also examined toward various solvents.
Collapse
Affiliation(s)
- Biing-Chiau Tzeng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Chung Liao
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Peng-Yuan Jung
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Si-Ying Chen
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Wei-Chung Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Chan MHY, Yam VWW. Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. J Am Chem Soc 2022; 144:22805-22825. [DOI: 10.1021/jacs.2c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
6
|
Yeung JY, Kong FK, Hau FK, Chan MH, Ng M, Leung M, Yam VW. Solvent‐Dependent Supramolecular Host–Guest Assemblies of Platinum(II) Tweezers and a Guest System: From Discrete Molecules to High‐Ordered Oligomers. Angew Chem Int Ed Engl 2022; 61:e202207313. [DOI: 10.1002/anie.202207313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jenny Yuk‐Wa Yeung
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Fred Ka‐Wai Kong
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Franky Ka‐Wah Hau
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Michael Ho‐Yeung Chan
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ming‐Yi Leung
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
7
|
McCarthy JS, McCormick MJ, Zimmerman JH, Hambrick HR, Thomas WM, McMillen CD, Wagenknecht PS. Role of the Trifluoropropynyl Ligand in Blue-Shifting Charge-Transfer States in Emissive Pt Diimine Complexes and an Investigation into the PMMA-Imposed Rigidoluminescence and Rigidochromism. Inorg Chem 2022; 61:11366-11376. [PMID: 35820113 DOI: 10.1021/acs.inorgchem.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.
Collapse
Affiliation(s)
- Jackson S McCarthy
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Mary Jo McCormick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - John H Zimmerman
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - H Rhodes Hambrick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Wilson M Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
8
|
Yeung JYW, Kong FKW, Hau FKW, Chan MHY, Ng M, Leung MY, Yam VWW. Solvent‐Dependent Supramolecular Host‐Guest Assemblies of Platinum(II) Tweezers and a Guest System: From Discrete Molecules to High‐Ordered Oligomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Maggie Ng
- The University of Hong Kong Chemistry CHINA
| | | | - Vivian W. W. Yam
- The University of Hong Kong Department of Chemistry Pokfulam RoadChong Yuet Ming Chemistry Building --- Hong Kong CHINA
| |
Collapse
|
9
|
Yam VWW, Cheng YH. Stimuli-Responsive and Switchable Platinum(II) Complexes and Their Applications in Memory Storage. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
10
|
Park HJ, Boelke CL, Cheong PHY, Hwang DH. Dinuclear Pt(II) Complexes with Red and NIR Emission Governed by Ligand Control of the Intramolecular Pt-Pt Distance. Inorg Chem 2022; 61:5178-5183. [PMID: 35320671 DOI: 10.1021/acs.inorgchem.1c03967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Red and near-infrared (NIR) phosphorescent double-decker dinuclear Pt(II) complexes were synthesized, and their structural and spectroscopic properties were characterized. The Pt(II) complexes, which are composed of achiral ligands and are themselves chiral, were shown to exist as racemic mixtures using single-crystal X-ray crystallography. The Pt(II) complexes have different intramolecular Pt-Pt distances that are governed by the electronic characteristics of the component C^N ligands. Specifically, strengthening of π-back-donation between Pt(II) and N atom of the C^N ligand leads to shortening of the Pt-Pt distance. The results of both experimental and computational investigations show that the Pt-Pt distances in the dinuclear Pt(II) complexes significantly influence the band gap energies and corresponding emission wavelengths. Consequently, the uncovered C^N ligand based method to finely control intramolecular Pt-Pt distances in dinuclear Pt(II) complexes can be utilized as a guideline for the design of the double-decker dinuclear Pt(II) complexes with red and NIR tuned phosphorescence.
Collapse
Affiliation(s)
- Hea Jung Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Claire Louise Boelke
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes. Proc Natl Acad Sci U S A 2022; 119:e2116543119. [PMID: 35298336 PMCID: PMC8944581 DOI: 10.1073/pnas.2116543119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular self-assembly provides a bottom-up platform to design supramolecular functional materials, attracting numerous interests in material sciences. The utilization of platinum(II) complexes as building blocks of supramolecular assemblies opens up the unique noncovalent Pt···Pt interaction as one of the driving forces, imparting the supramolecular materials with rich spectroscopic features. However, the exact role of Pt···Pt interactions in molecular assembly remains elusive. The current study combines experimental and computational techniques to elucidate the role of Pt···Pt interactions in the self-assembly process of a representative amphiphilic platinum(II) complex. This work demonstrates the directional role of Pt···Pt interactions in assisting the molecular assembly in an anisotropic manner, achieving the formation of ordered self-assembled structures. Here, we report the use of an amphiphilic Pt(II) complex, K[Pt{(O3SCH2CH2CH2)2bzimpy}Cl] (PtB), as a model to elucidate the key role of Pt···Pt interactions in directing self-assembly by combining temperature-dependent ultraviolet-visible (UV-Vis) spectroscopy, stopped-flow kinetic experiments, quantum mechanics (QM) calculations, and molecular dynamics (MD) simulations. Interestingly, we found that the self-assembly mechanism of PtB in aqueous solution follows a nucleation-free isodesmic model, as revealed by the temperature-dependent UV-Vis experiments. In contrast, a cooperative growth is found for the self-assembly of PtB in acetone–water (7:1, vol/vol) solution, which is further verified by the stopped-flow experiments, which clearly indicates the existence of a nucleation phase in the acetone–water (7:1, vol/vol) solution. To reveal the underlying reasons and driving forces for these self-assembly processes, we performed QM calculations and show that the Pt···Pt interactions arising from the interaction between the pz and dz2 orbitals play a crucial role in determining the formation of ordered self-assembled structures. In subsequent oligomer MD simulations, we demonstrate that this directional Pt···Pt interaction can indeed facilitate the formation of linear structures packed in a helix-like fashion. Our results suggest that the self-assembly of PtB in acetone–water (7:1, vol/vol) solution is predominantly driven by the directional noncovalent Pt···Pt interaction, leading to the cooperative growth and the formation of fibrous nanostructures. On the contrary, the self-assembly in aqueous solution forms spherical nanostructures of PtB, which is primarily due to the predominant contribution from the less directional hydrophobic interactions over the directional Pt···Pt and π−π interactions that result in an isodesmic growth.
Collapse
|
12
|
Wong EKH, Chan MHY, Tang WK, Leung MY, Yam VWW. Molecular Alignment of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2-yl)pyridine Double Complex Salts and the Formation of Well-Ordered Nanostructures Directed by Pt···Pt and Donor-Acceptor Interactions. J Am Chem Soc 2022; 144:5424-5434. [PMID: 35302371 DOI: 10.1021/jacs.1c12994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new class of alkynylplatinum(II) bzimpy (bzimpy = bis(benzimidazol-2-yl)pyridine) double complex salts (DCSs) containing dialkoxynaphthalene or pyromellitic diimide moieties on the alkynyl ligand has been reported to display distinct morphological properties compared to their precursor alkynylplatinum(II) complexes, with the capability of being aligned by the directional Pt···Pt and/or π-π stacking interactions. The incorporation of donor and acceptor units on the alkynyl ligands has been found to significantly perturb the alignment of the oppositely charged complex ions in the DCSs to stack in a twisted head-to-head manner, attributed to the additional driving forces of electrostatic and donor-acceptor interactions. The modulation of the Pt···Pt distances and the extent of aggregate formation have been demonstrated by altering the charge matching between the platinum(II) bzimpy moieties and the donor or acceptor moieties on the alkynyl ligand.
Collapse
Affiliation(s)
- Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Wai Kit Tang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
13
|
Conceptual advances in the preparation and excited-state properties of neutral luminescent (C^N) and (C^C*) monocyclometalated gold(III) complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Kobayashi A, Imada SI, Yao Y, Nagao Y, Kubota Y, Yoshida M, Kato M. Halide Replacement Effect on Proton Conductivity and Vapochromic Luminescence of Pt(II) Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shin-ichiro Imada
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuze Yao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuto Kubota
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
15
|
Park J, Hwang M, Ok M, Li C, Choi H, Seo ML, Jung JH. Supramolecular polymerization of Pt(II) complex with terpyridine-based ligand possessing alanine moiety in nonpolar solvent. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Law ASY, Lee LCC, Lo KKW, Yam VWW. Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening. J Am Chem Soc 2021; 143:5396-5405. [PMID: 33813827 DOI: 10.1021/jacs.0c13327] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an important nuclear substructure, the nucleolus has received increasing attention because of its significant functions in the transcription and processing of ribosomal RNA in eukaryotic cells. In this work, we introduce a proof-of-concept luminescence assay to detect RNA and to accomplish nucleolus imaging with the use of the supramolecular self-assembly of platinum(II) complexes. Noncovalent interactions between platinum(II) complexes and RNA can be induced by the introduction of a guanidinium group into the complexes, and accordingly, a high RNA affinity can be achieved. Interestingly, the aggregation affinities of platinum(II) complexes enable them to display remarkable luminescence turn-on upon RNA binding, which is a result of the strengthening of noncovalent Pt(II)···Pt(II) and π-π stacking interactions. The complexes exhibit not only intriguing spectroscopic changes and luminescence enhancement after RNA binding but also specific nucleolus imaging in cells. As compared to fluorescent dyes, the low-energy red luminescence and large Stokes shifts of platinum(II) complexes afford a high signal-to-background autofluorescence ratio in nucleolus imaging. Additional properties, including long phosphorescence lifetimes and low cytotoxicity, have endowed the platinum(II) complexes with the potential for biological applications. Also, platinum(II) complexes have been adopted to monitor the dynamics of the nucleolus induced by the addition of RNA synthesis inhibitors. This capability allows the screening of inhibitors and can be advantageous for the development of antineoplastic agents. This work provides a novel strategy for exploring the application of platinum(II) complex-based cell imaging agents based on the mechanism of supramolecular self-assembly. It is envisaged that platinum(II) complexes can be utilized as valuable probes because of the aforementioned appealing advantages.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
17
|
Tao W, Chen Y, Lu L, Liu C. Luminescence properties of cyclometalated platinum(II) complexes in a dichloromethane/n-hexane system. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ouyang C, Li Y, Rees TW, Liao X, Jia J, Chen Y, Zhang X, Ji L, Chao H. Supramolecular Assembly of An Organoplatinum(II) Complex with Ratiometric Dual Emission for Two‐Photon Bioimaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yongguang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jianhua Jia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiting Zhang
- Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong S.A.R. P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
19
|
Ouyang C, Li Y, Rees TW, Liao X, Jia J, Chen Y, Zhang X, Ji L, Chao H. Supramolecular Assembly of An Organoplatinum(II) Complex with Ratiometric Dual Emission for Two-Photon Bioimaging. Angew Chem Int Ed Engl 2021; 60:4150-4157. [PMID: 33174359 DOI: 10.1002/anie.202014043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/18/2022]
Abstract
The organoplatinum(II) complex [Pt(C^N^N)(Cl)] (C^N^N=5,6-diphenyl-2,2'-bipyridine, Pt1) can assemble into nanoaggregates via π-π stacking and complementary hydrogen bonds, rather than Pt-Pt interactions. Pt1 exhibits ratiometric dual emission, including rare blue emission (λem =445 nm) and assembly-induced yellow emission (λem =573 nm), under one- and two-photon excitation. Pt1 displays blue emission in cells with an intact membrane due to its low cellular uptake. In cells where the membrane is disrupted, uptake of the complex is increased and at higher concentrations yellow emission is observed. The ratio of yellow to blue emission shows a linear relationship to the loss of cell membrane integrity. Pt1 is, to our knowledge, the first example of an assembly-induced two-photon ratiometric dual emission organoplatinum complex. The excellent and unique characteristics of the complex enabled its use for the tracking of cell apoptosis, necrosis, and the inflammation process in zebrafish.
Collapse
Affiliation(s)
- Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yongguang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Jia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
20
|
Lin J, Xie M, Zhang X, Gao Q, Chang X, Zou C, Lu W. Helically chiral Pd(ii) complexes containing intramolecular PdPd metallophilicity as circularly polarized molecular phosphors. Chem Commun (Camb) 2021; 57:1627-1630. [PMID: 33459300 DOI: 10.1039/d0cc08188d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon-centred chirality of the pincer-type cyclometalated ligands is transferred to the helical chirality of dinuclear and tetranuclear Pd(ii) arylacetylide complexes, and hence phosphorescence with quantum yields up to 50% and dissymmetry factors in the 10-3 scale from the metal-metal-to-ligand charge-transfer excited states has been recorded in diluted solutions.
Collapse
Affiliation(s)
- Jinqiang Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Kobayashi A, Imada SI, Wang D, Nagao Y, Yoshida M, Kato M. Cooperative phenomenon of vapochromism and proton conduction of luminescent Pt(ii) complexes for the visualisation of proton conductivity. Faraday Discuss 2021; 225:184-196. [PMID: 33094299 DOI: 10.1039/d0fd00001a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The luminescent and proton conductive Pt(ii) complex [PtCl(tpy-o-py)]Cl and its HCl adduct [PtCl(tpy-o-pyH)]Cl2 (o-Pt and o-Pt·HCl, respectively; tpy-o-py = 2,2':6',2''-terpyridine-6',2'''-pyridine) were synthesised and their crystal structures, vapochromic behaviour, and proton conduction, were investigated and compared to those of the para isomers [PtCl(tpy-p-py)]Cl and [PtCl(tpy-p-pyH)]Cl2 (p-Pt and p-Pt·HCl, respectively; tpy-p-py = 2,2':6',2''-terpyridine-4',4'''-pyridine). X-ray structure analysis revealed that the intermolecular metallophilic (PtPt) interaction was negligible in o-Pt but effective in o-Pt·HCl. Reversible transformation between o-Pt and o-Pt·HCl coupled with significant colour and luminescence changes was achieved by four different external stimuli, namely: exposure of o-Pt to humid HCl gas to form o-Pt·HCl, heating, exposure to MeOH vapour, and finally drying in air to regenerate the original o-Pt. The intraligand π-π* orange emission observed for o-Pt exhibited negligible dependence on the relative humidity (RH). Conversely, o-Pt·HCl exhibited red metal-metal-to-ligand charge-transfer (MMLCT) phosphorescence at 725 nm, originating from effective intermolecular Pt-Pt interactions, and interesting vapochromic behaviour that was dependent on the RH. Notably, o-Pt·HCl presented higher conductivity than the p-Pt·HCl isomer at RH < 80%. This trend was reversed at RH values > 80%, probably owing to the second water-adsorption-induced transformation of p-Pt·HCl. The cooperative phenomenon between the proton conduction and vapochromic behaviour observed for both o-Pt·HCl and p-Pt·HCl should allow the visualisation of the proton-conducting pathway, without the need for a bulk electrode, via the absorption and emission colours at both macroscopic and microscopic levels.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Yam VW, Law AS. Recent advances in supramolecular
self‐assembly
and biological applications of luminescent alkynylplatinum(
II
) polypyridine complexes. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong, Pokfulam Road Hong Kong People's Republic of China
| | - Angela Sin‐Yee Law
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong, Pokfulam Road Hong Kong People's Republic of China
| |
Collapse
|
24
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020; 59:18723-18730. [PMID: 32666592 DOI: 10.1002/anie.202008383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
25
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
26
|
Yam VWW, Law ASY. Luminescent d8 metal complexes of platinum(II) and gold(III): From photophysics to photofunctional materials and probes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213298] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abstract
Manipulation of non-covalent metal–metal interactions allows the fabrication of functional metallosupramolecular structures with diverse supramolecular behaviors. The majority of reported studies are mostly designed and governed by thermodynamics, with very few examples of metallosupramolecular systems exhibiting intriguing kinetics. Here we report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels. Upon mixing the alkynylplatinum(ii) terpyridine complex with double-stranded DNA in aqueous solution, the platinum(ii) complex molecules are found to first stack into columnar phases by metal–metal and π–π interactions, and then the columnar phases that carry multiple positive charges crosslink the negatively charged DNA strands to form supramolecular hydrogels with luminescence properties and excellent processability. Subsequent platinum(ii) intercalation into DNA competes with the metal–metal and π–π interactions at the crosslinking points, switching on the spontaneous gel-to-sol transition. In the case of a chloro (2,6-bis(benzimidazol-2′-yl)pyridine)platinum(ii) complex, with [Pt(bzimpy)Cl]+ serving as a non-covalent crosslinker where the metal–metal and π–π interactions outcompete platinum(ii) intercalation, the intercalation-driven gel-to-sol transition pathway is blocked since the gel state is energetically more favorable than the sol state. Interestingly, the ligand exchange reaction of the chloro ligand in [Pt(bzimpy)Cl]+ with glutathione (GSH) has endowed the complexes with enhanced hydrophilicity, decreasing the planarity of the complexes, and turning off the metal–metal and π–π interactions at the crosslinking points, leading to GSH-triggered hydrogel dissociation. We report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels.![]()
Collapse
Affiliation(s)
- Kaka Zhang
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong PR China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong PR China
| |
Collapse
|
28
|
Zhang K, Yeung MCL, Leung SYL, Yam VWW. Platinum(II) Probes for Sensing Polyelectrolyte Lengths and Architectures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8503-8512. [PMID: 32027479 DOI: 10.1021/acsami.9b17611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum(II) polypyridine complexes of a square-planar geometry have been used as spectroscopic reporters for quantification of various charged species through non-covalent metal-metal interactions. The characterization of molecular weights and architectures of polyelectrolytes represents a challenging task in polymer science. Here, we report the utilization of platinum(II) complex probes and non-covalent metal-metal interactions for sensing polyelectrolyte lengths and architectures. It is found that the platinum(II) probes can bind to linear polyelectrolytes via electrostatic attractions and give rise to significant spectroscopic changes associated with the formation of metal-metal interactions, and the extent of the spectroscopic changes is found to increase with the lengths of the linear polyelectrolytes. Besides, the platinum(II) probes have been found to co-assemble with the linear polyelectrolytes to form well-defined nanofibers, and the lengths of the linear polyelectrolytes can be directly estimated from the diameter of the nanofibers under transmission electron microscopy observation. Interestingly, upon mixing with the platinum(II) probes, polyelectrolytes with bottlebrush architectures have been found to exhibit larger spectroscopic changes than linear polyelectrolytes with the same chemical composition. Combined with the reported theoretical studies on counterion condensation of polyelectrolytes, the platinum(II) complexes are found to function as spectroscopic probes for sensing the charge densities of the polyelectrolytes with different lengths and diverse architectures. Moreover, platinum(II) probes pre-organized in nanostructured aggregates have been found to intercalate into double-stranded DNA, which are naturally occurring biological polyelectrolytes with helical architectures and intercalation sites, to give significant enhancement of spectroscopic changes when compared to the intercalation of monomeric platinum(II) probes into double-stranded DNA.
Collapse
Affiliation(s)
- Kaka Zhang
- Institute of Molecular Functional Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| |
Collapse
|
29
|
Shingade VM, Connick WB. Solution aggregation of platinum( ii) triimine methyl complexes. Dalton Trans 2020; 49:10729-10733. [DOI: 10.1039/d0dt02190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly processes are investigated in two model compounds, Pt(L)(CH3)+ (where, L = 2,6-bis(N-methylbenzimidazol-2-yl)pyridine OR 2,2′;6′2′′-terpyridine), employing NMR. Structural conformations of formed assemblies are confirmed by 2D NOESY.
Collapse
|
30
|
Leung SKM, Chan AKW, Leung SYL, Leung MY, Yam VWW. Supramolecular assembly of bent dinuclear amphiphilic alkynylplatinum(ii) terpyridine complexes: diverse nanostructures through subtle tuning of the mode of molecular stacking. Chem Sci 2019; 11:499-507. [PMID: 32190269 PMCID: PMC7067253 DOI: 10.1039/c9sc04475b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022] Open
Abstract
A new class of bent amphiphilic alkynylplatinum(ii) terpyridine complexes was found to adopt different modes of molecular stacking to give diverse nanostructures.
A new class of bent amphiphilic alkynylplatinum(ii) terpyridine complexes was found to adopt different modes of molecular stacking to give diverse nanostructures. In chlorinated solvents, the complexes aggregate in the presence of water droplets and assist in the formation of porous networks, while in DMSO solutions, they self-assemble to give fibrous nanostructures. The complexes would adopt a head-to-tail tetragonal stacking arrangement, as revealed by X-ray crystallographic studies, computational studies and powder X-ray diffraction (PXRD) studies. Their self-assembly follows a cooperative growth mechanism in DMSO and an isodesmic growth mechanism in DMSO–H2O mixture. The balance between hydrophobic and hydrophilic components of the complex system, in conjunction with the nuclearity and the positioning of the substituents, are found to govern the mode of molecular stacking and the fabrication of precise functional nanostructures. This class of complexes serve as versatile building blocks to construct orderly packed molecular materials and functional materials in a well-controlled manner.
Collapse
Affiliation(s)
- Sam Ka-Ming Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong .
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong .
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong .
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong .
| |
Collapse
|
31
|
Law ASY, Lee LCC, Yeung MCL, Lo KKW, Yam VWW. Amyloid Protein-Induced Supramolecular Self-Assembly of Water-Soluble Platinum(II) Complexes: A Luminescence Assay for Amyloid Fibrillation Detection and Inhibitor Screening. J Am Chem Soc 2019; 141:18570-18577. [PMID: 31709796 DOI: 10.1021/jacs.9b09515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid fibrillation has been acknowledged as a hallmark of a number of neurodegenerative ailments such as Alzheimer's disease. Accordingly, efficient detection of amyloid fibrillation will allow for great advances in the field of biomedical applications as well as in achieving early medical diagnosis. In this work, a luminescence assay for the sensitive and specific detection of amyloid fibrillation was developed by using platinum(II) complexes as sensing platforms. Supramolecular self-assembly of platinum(II) complexes was induced upon addition of amyloid, leading to alterations in the spectroscopic and luminescence properties of the complexes. As compared to fluorescent dyes, luminescent platinum(II) complexes exhibit attractive large Stokes shifts, phosphorescence lifetimes in the microsecond to submicrosecond regime, and low-energy red emission after aggregation, which are advantageous to biological imaging. At the same time, the platinum(II) complex adopted herein was found to have high photostability, high selectivity and specificity, and low cytotoxicity. The proposed design is the very first approach to detect amyloid fibrillation through the supramolecular self-assembly of luminescent platinum(II) complexes.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , People's Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| |
Collapse
|
32
|
Chan CWT, Cheng HK, Hau FKW, Chan AKW, Yam VWW. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31585-31593. [PMID: 31436404 DOI: 10.1021/acsami.9b08653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A label-free detection assay is developed based on the design and synthesis of a new anionic alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine complex with water-soluble pendants. With the aid of electrostatic interaction and noncovalent metal-metal and π-π stacking interactions, protamine is shown to induce supramolecular self-assembly of platinum(II) complexes with drastic UV-vis absorption and red emission changes. On the basis of the strong binding affinity of protamine and heparin, the ensemble has been further employed to probe heparin by monitoring the spectroscopic changes. Other than heparin, this ensemble can also detect the activity of trypsin, which can hydrolyze protamine into fragments, leading to the deaggregation of platinum(II) complexes. By modulation of the self-assembly properties of platinum(II) complexes via real-time UV-vis absorption and emission studies, the reported assay has been demonstrated to be a sensitive and selective detection method for trypsin, as well as trypsin inhibitor screening, which is essential for drug discovery.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Heung-Kiu Cheng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Franky Ka-Wah Hau
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| |
Collapse
|
33
|
Barker NM, Li YX, Lee MM, Shen CR, Krause JA, Sun SS, Lu N, Connick WB, McMillin DR. Synthesis, Luminescence, and Structure of a Polymorphic Polyfluorinated Diiodoplatinum(II) Diimine Complex. Inorg Chem 2019; 58:10716-10724. [PMID: 31389696 DOI: 10.1021/acs.inorgchem.9b00669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PtI2(5,5'-bis(HCF2CH2OCH2)-2,2'-bpy)], 55-2FH-PtI2, is the first example of a substituted fluorinated diiodoplatinum diimine complex that exhibits polymorphism. The complex, upon recrystallization, forms two different polymorphs, denoted as α and β forms. The luminescence of the α and β forms are the same in glassy solution at 77 K; however, in the solid state, they differ significantly. The major difference between them lies in the solid-state packing of the crystalline structure. The α form is a square planar polyfluorinated PtI2-containing complex. Its extended herringbone structure consists of two neighboring stacked bipyridyl planes that do not overlap. The α form emits stronger than its parent molecule, [PtI2bpy], and much stronger than the β polymorph. The β form has a slight tetrahedral distortion about the metal center that ultimately changes the geometry of the complex and decreases the d-orbital splitting from square planar. Furthermore, overlapping bipyridine rings in the extended structure of the β form quench the emission thus resulting in a lower energy emission. Additionally, the β form shows only one type of C-H···O intermolecular stacking interaction that can cause the moderate distortion of the metal core.
Collapse
Affiliation(s)
- Nathaniel M Barker
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0172 , United States
| | - Yu-Xuan Li
- Institute of Organic and Polymeric Materials , National Taipei University of Technology , Taipei 106 , Taiwan , Republic of China
| | - Mandy M Lee
- Institute of Chemistry , Academia Sinica , 115 Nankang , Taipei , Taiwan , Republic of China
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan , Republic of China.,Department of Ophthalmology , Lin-Kou Chang Gung Memorial Hospital , Taoyuan City , Taiwan , Republic of China
| | - Jeanette A Krause
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0172 , United States
| | - Shih-Sheng Sun
- Institute of Chemistry , Academia Sinica , 115 Nankang , Taipei , Taiwan , Republic of China
| | - Norman Lu
- Institute of Organic and Polymeric Materials , National Taipei University of Technology , Taipei 106 , Taiwan , Republic of China.,Department of Chemistry , Purdue University , 1393 Brown Building , West Lafayette , Indiana 47907-1393 , United States
| | - William B Connick
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221-0172 , United States
| | - David R McMillin
- Department of Chemistry , Purdue University , 1393 Brown Building , West Lafayette , Indiana 47907-1393 , United States
| |
Collapse
|
34
|
Chan MHY, Leung SYL, Yam VWW. Rational Design of Multi-Stimuli-Responsive Scaffolds: Synthesis of Luminescent Oligo(ethynylpyridine)-Containing Alkynylplatinum(II) Polypyridine Foldamers Stabilized by Pt···Pt Interactions. J Am Chem Soc 2019; 141:12312-12321. [DOI: 10.1021/jacs.9b04447] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
35
|
Momeni BZ, Fathi N, Janczak J, Shahsavari Z. Dihaloplatinum(II) complexes having diimine ligands: crystal structure, thermal properties, cytotoxicity effects against breast cancer cells and application as a precursor towards nanoparticles. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1568420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Nastaran Fathi
- Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | - Zahra Shahsavari
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sin-Yee Law A, Yeung MCL, Yam VWW. A Luminescence Turn-On Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Supramolecular Self-Assembly of Alkynylplatinum(II) Complexes on Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4799-4808. [PMID: 30694047 DOI: 10.1021/acsami.8b18739] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new approach toward acetylcholinesterase (AChE) detection has been demonstrated based on the electrostatic interactions between anionic alkynylplatinum(II) complex molecules and cationic coordination polymer, together with the spectroscopic and emission characteristics of alkynylplatinum(II) complexes upon supramolecular self-assembly. This process involves strengthening of distinct noncovalent Pt(II)···Pt(II) and π-π stacking interactions, which is evidenced by UV-vis absorption, emission, and resonance light scattering results. Such a method has been applied to AChE inhibitor screening, which is important as the demand for AChE inhibitor assays arises along with the drug development for Alzheimer's disease. It affords an emission turn-on response and operates in a continuous and label-free fashion. The low-energy red emission and large Stokes shift of alkynylplatinum(II) complexes are advantageous to biological applications.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| |
Collapse
|
37
|
Ning H, Huang X, Yang L, Zhang J. Molecular design of organoplatinum(II) complexes through a DFT/TDDFT study: Photophysical properties and intermolecular interactions. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Lin J, Zou C, Zhang X, Gao Q, Suo S, Zhuo Q, Chang X, Xie M, Lu W. Highly phosphorescent organopalladium(ii) complexes with metal–metal-to-ligand charge-transfer excited states in fluid solutions. Dalton Trans 2019; 48:10417-10421. [DOI: 10.1039/c9dt02525a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Making Pd(ii) brightly shining: mononuclear analogues are non-emissive, but folded dinuclear palladium(ii) diacetylide complexes phosphoresce from MMLCT excited states with quantum yields up to 48%.
Collapse
Affiliation(s)
- Jinqiang Lin
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Chao Zou
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xiaobao Zhang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Qin Gao
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Sa Suo
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Qihang Zhuo
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xiaoyong Chang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Mo Xie
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Wei Lu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
39
|
Singh P, Shabbani G, Singh AS, Bajaj HC, Suresh E. Regioselective cyclometallation of N-methyl-N-(naphthalen-2-ylmethyl)-2-(pyridin-2-yl)ethanamine with palladium(II) acetate and catalytic reduction of various functional groups. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Chan AKW, Yam VWW. Precise Modulation of Molecular Building Blocks from Tweezers to Rectangles for Recognition and Stimuli-Responsive Processes. Acc Chem Res 2018; 51:3041-3051. [PMID: 30427166 DOI: 10.1021/acs.accounts.8b00339] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alkynylplatinum(II) terpyridine complexes have been increasingly explored since the previous decades, mainly arising from their intriguing photophysical properties and aggregation affinities associated with their extensive Pt(II)···Pt(II) and π-π stacking interactions. Through molecular engineering, one can modulate their fundamental properties and assembly behavior by introduction of various functional groups and structural features. They can therefore serve as ideal candidates to construct metal complex-based molecular architectures to provide an alternative to organic compounds. The metal-based framework can be simultaneously built from predetermined building blocks, giving rise to their well-defined, unique, and discrete natures for molecular recognition. The individual constituents can contribute to molecular architectures with their integrated properties, allowing the manipulation of the various noncovalent intermolecular forces and interactions for selective guest capture. In this Account, our recent progress in the development of these metallomolecular frameworks based on the alkynylplatinum(II) terpyridine system and their recognition properties toward different guest molecules will be presented. Phosphorescent molecular tweezers have been constructed from the alkynylplatinum(II) terpyridine moiety to demonstrate host-guest interactions with cationic, charge-neutral and anionic platinum(II), palladium(II), gold(I), and gold(III) complexes and their binding affinities were found to be perturbed by different metal···metal, π-π and electrostatic interactions. The host-guest assembly process has also resulted in dramatic color changes, together with the turning on of near-IR (NIR) emissions as a result of extensive Pt(II)···Pt(II) interactions. Further work has also been performed to demonstrate that the tweezers can selectively recognize π-surfaces of different planar π-conjugated organic guests. The framework of molecular tweezers has been extended to a double-decker tweezers structure, or a triple-decker structure, which can bind two equivalents of square-planar platinum(II) guests cooperatively to induce a significant color change in solution, representing rare examples of discrete Magnus' green-like salts. By the approaches of structural modifications, we have further modulated the host architecture from molecular tweezers to molecular rectangles. The rectangles have been found to show selective encapsulation of different transition metal complex guests based on the size and steric environment of the host cavity. The molecular rectangles also exhibit reversible host-guest association, in which guest capture and ejection processes can be manipulated by the pH environment, illustrating a potential approach for precise and smart delivery of therapeutic reagents to the slightly more acidic cancer cells.
Collapse
Affiliation(s)
- Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
41
|
Wong YS, Leung FCM, Ng M, Cheng HK, Yam VWW. Platinum(II)-Based Supramolecular Scaffold-Templated Side-by-Side Assembly of Gold Nanorods through Pt⋅⋅⋅Pt and π-π Interactions. Angew Chem Int Ed Engl 2018; 57:15797-15801. [DOI: 10.1002/anie.201810302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Yip-Sang Wong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Frankie Chi-Ming Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Heung-Kiu Cheng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| |
Collapse
|
42
|
Wong YS, Leung FCM, Ng M, Cheng HK, Yam VWW. Platinum(II)-Based Supramolecular Scaffold-Templated Side-by-Side Assembly of Gold Nanorods through Pt⋅⋅⋅Pt and π-π Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yip-Sang Wong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Frankie Chi-Ming Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Heung-Kiu Cheng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme; University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong People's Republic of China
| |
Collapse
|
43
|
Park G, Yu S, Kim S, Nah Y, Son A, You Y. Monocycloplatinated Solvento Complex Displays Turn-on Ratiometric Phosphorescence Responses to Histamine. Inorg Chem 2018; 57:13985-13997. [DOI: 10.1021/acs.inorgchem.8b02612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Fang S, Leung SYL, Li Y, Yam VWW. Directional Self-Assembly and Photoinduced Polymerization of Diacetylene-Containing Platinum(II) Terpyridine Complexes. Chemistry 2018; 24:15596-15602. [PMID: 30221406 DOI: 10.1002/chem.201802592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Indexed: 11/07/2022]
Abstract
A series of newly designed and synthesized diacetylene-containing platinum(II) terpyridine complexes exhibited intriguing self-assembly properties. Facilitated by Pt⋅⋅⋅Pt, π-π stacking, hydrogen-bonding and hydrophobic-hydrophobic interactions, these complexes are preorganized to readily undergo topochemical polymerization reactions upon photoirradiation. The in situ polymerization of the diacetylene units to form polydiacetylene, indicated by the UV/Vis spectral changes, gel permeation chromatography and dynamic light scattering, was found to alter their assembly behaviours, as revealed by TEM images.
Collapse
Affiliation(s)
- Shishi Fang
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yongguang Li
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
45
|
Zhang K, Yeung MCL, Leung SYL, Yam VWW. Energy Landscape in Supramolecular Coassembly of Platinum(II) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures. J Am Chem Soc 2018; 140:9594-9605. [PMID: 30040413 DOI: 10.1021/jacs.8b04779] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Establishment of energy landscape has emerged as an efficient pathway for improved understanding and manipulation of both thermodynamic and kinetic behaviors of complicated supramolecular systems. Herein, we report the establishment of energy landscapes of supramolecular coassembly of platinum(II) complexes and polymers, as well as the fabrication of nanostructures with enhanced complexity and intriguing properties from the coassembly systems. In the energy landscape, coassembly at room temperature has been found to only allow the longitudinal growth of platinum(II) complexes and block copolymers into core-shell nanofibers that are the kinetically trapped products. Thermal annealing can switch on the transverse growth of platinum(II) complexes and block copolymers to produce core-shell nanobelts that are the thermodynamically stable nanostructures. The extents of the transverse growth are found to increase with thermal annealing temperatures, leading to nanobelts with larger widths. Besides, rapid quenching of a hot coassembly mixture to room temperature can capture intermediate nanobelt- block-nanofiber nanostructures that are metastable and capable of converting to nanobelts upon further incubation at room temperature. Moreover, sonication treatment has been found to couple with the energy landscape of the coassembly system and open a unique energy-driven pathway to activate the kinetically forbidden nanofiber-to-nanobelt morphological transformation. Furthermore, based on the established energy landscapes, nanosphere- block-nanobelt nanostructures with distinct segmented architectures have been fabricated by thermal annealing of the ternary mixture of platinum(II) complexes, block copolymers, and polymer brushes in a one-pot and single-step procedure. Finally, the nanobelts and nanosphere- block-nanobelt nanostructures are found to possess intriguing morphological stability against acid and dilution, exhibiting characteristics that are important for promising biomedical applications.
Collapse
Affiliation(s)
- Kaka Zhang
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China
| |
Collapse
|
46
|
Chan MHY, Leung SYL, Yam VWW. Controlling Self-Assembly Mechanisms through Rational Molecular Design in Oligo(p-phenyleneethynylene)-Containing Alkynylplatinum(II) 2,6-Bis(N-alkylbenzimidazol-2′-yl)pyridine Amphiphiles. J Am Chem Soc 2018; 140:7637-7646. [DOI: 10.1021/jacs.8b03628] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
47
|
Cheng Y, Li L, Wei F, Wong KMC. Alkynylplatinum(II) Terpyridine System Coupled with Rhodamine Derivative: Interplay of Aggregation, Deaggregation, and Ring-Opening Processes for Ratiometric Luminescence Sensing. Inorg Chem 2018; 57:6439-6446. [DOI: 10.1021/acs.inorgchem.8b00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yukun Cheng
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Ling Li
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
48
|
Immobilization of luminescent Platinum(II) complexes on periodic mesoporous organosilica and their water reduction photocatalysis. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Cheung AFF, Hong EYH, Yam VWW. Supramolecular Assembly of Phosphole Oxide Based Alkynylplatinum(II) 2,6-Bis(N-alkylbenzimidazol-2'-yl)pyridine Complexes-An Interplay of Hydrophobicity and Aromatic π-Surfaces. Chemistry 2018; 24:1383-1393. [PMID: 29266490 DOI: 10.1002/chem.201704110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 01/27/2023]
Abstract
A new class of phosphole oxide based alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine (bzimpy) complexes were synthesized and characterized. Their self-assembly was driven by hydrophobic-hydrophobic and π-π stacking interactions. The self-assembly properties were also investigated by UV/Vis absorption spectroscopy, which revealed that the alkyl-chain length of the bzimpy moiety and the π-surface area of the alkynyl ligand have significant influence on the overall self-assembly process. The alkyl-chain length also affected the morphological structures of the aggregates, which were studied by transmission electron microscopy and scanning electron microscopy.
Collapse
Affiliation(s)
- Andy Fu-Fai Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
50
|
Law ASY, Yeung MCL, Yam VWW. Arginine-Rich Peptide-Induced Supramolecular Self-Assembly of Water-Soluble Anionic Alkynylplatinum(II) Complexes: A Continuous and Label-Free Luminescence Assay for Trypsin and Inhibitor Screening. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41143-41150. [PMID: 29140068 DOI: 10.1021/acsami.7b12319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A water-soluble anionic alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complex has been strategically designed and synthesized to show supramolecular self-assembly with cationic arginine-rich peptides through unique noncovalent Pt(II)···Pt(II) and π-π stacking interactions. Upon introduction of trypsin, the arginine-rich peptides can be hydrolyzed into small fragments and deaggregation of the platinum(II) complex molecules is observed. The aggregation-deaggregation process has been probed by UV-vis absorption, emission, and resonance light scattering (RLS) studies. This platinum(II) complex has been employed for developing a new, continuous and label-free luminescence assay for trypsin as well as for inhibitor screening, and has been successfully applied to detect trypsin in diluted serum solutions.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|