1
|
Akhound MA, Soleimani M, Pourfath M. Tunable N 2 Fixation Enabled by Ferroelectric Switching in Doped Graphene/In 2Se 3 Dual-Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40015996 DOI: 10.1021/acsami.4c21092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains a significant challenge. In this work, we propose a class of dual-atom catalysts (DACs), consisting of two metal atoms embedded in nitrogen-doped porous graphene (M2NPG) supported on a ferroelectric α-In2Se3 monolayer. Using density functional theory (DFT) calculations, we explore the effect of ferroelectric polarization switching on the structural stability, catalytic performance, and reaction mechanisms of these DACs. By computationally screening 27 metal atoms as active sites, we identify four promising candidates (V, Co, Ru, and Ta) with V2NPG@In2Se3 standing out due to its exceptional properties. The precise control of NRR pathways, along with tunable limiting potentials and selective product formation, can be achieved through the polarization switching of the α-In2Se3 monolayer. The combination of low limiting potential, abundant active sites, tunable catalytic behavior, and high selectivity against the hydrogen evolution reaction (HER) highlights the potential of V2NPG@In2Se3 as a promising alternative to traditional single-atom catalysts. This work demonstrates a versatile strategy for integrating DACs with ferroelectric materials, offering valuable insights into designing next-generation catalysts for NRR and beyond.
Collapse
Affiliation(s)
- Mohammad Amin Akhound
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran
- CAMD, Department of Physics, Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark
| | - Maryam Soleimani
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran
- Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
2
|
Li Y, Xin X, Zhu Q, Zhu C. Dinitrogen Activation and Conversion by Actinide Complexes. JACS AU 2024; 4:4612-4627. [PMID: 39735921 PMCID: PMC11672147 DOI: 10.1021/jacsau.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
The efficient activation and conversion of dinitrogen (N2) represent a significant challenge in sustainable chemistry, offering potential pathways for synthesizing valuable nitrogen-containing compounds while reducing the environmental impact of traditional nitrogen fixation processes. While transition metal catalysts have been extensively studied for this purpose, actinide complexes have been less explored but have recently emerged as promising candidates due to their unique electronic properties and reactivity. This Perspective systematically examines the recent advances in N2 activation and conversion mediated by actinide complexes, with a particular focus on their synthesis, mechanistic insights, and catalytic capabilities.
Collapse
Affiliation(s)
- Yafei Li
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Xin
- School
of Medicine, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Qin Zhu
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congqing Zhu
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Krishnapriya VU, Suresh CH. Beyond the triple bond: unlocking dinitrogen activation with tailored superbase phosphines. Dalton Trans 2024; 53:19235-19245. [PMID: 39530230 DOI: 10.1039/d4dt02703e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Activating atmospheric dinitrogen (N2), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)3P) and imidazolin-2-methylidene ((ImCH)3P) to facilitate N2 activation and subsequent hydrazine (H2NNH2) formation. Using density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal mol-1). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for the hypervalency of these phosphines lead to substantial N2 activation in bis-phosphine-N2 complexes, where N2 is "sandwiched" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)3P forms an exothermic sandwich complex with N2, stabilized by hydrogen bonding between the ImN substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfer leads to the formation of a bis-phosphine-hydrazine (H2NNH2) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall transformation suggest its potential feasibility under the optimized conditions. This theoretical exploration highlights the promise of superbase phosphines as a strategy for metal-free N2 activation, opening doors for the development of more efficient and sustainable nitrogen fixation and utilization methods.
Collapse
Affiliation(s)
- Vilakkathala U Krishnapriya
- Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram - 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
| | - Cherumuttathu H Suresh
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
- Srinivasa Ramanujan Institute for Basic Sciences, Kerala State Council for Science Technology and Environment, Kottayam, 686501, Kerala, India
| |
Collapse
|
4
|
Dance I. The activating capture of N 2 at the active site of Mo-nitrogenase. Dalton Trans 2024; 53:14193-14211. [PMID: 39140218 DOI: 10.1039/d4dt01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Dinitrogen is inherently inert. This report describes detailed density functional calculations (with a 485+ atom model) of mechanistic steps by which the enzyme nitrogenase activates unreactive N2 at the intact active site FeMo-co, to form a key intermediate with bound HNNH. This mechanism does not bind N2 first and then add H atoms, but rather captures N2 ('N2-ready') that diffuses in through the substrate channel and enters a strategic gallery of H atom donors in the reaction zone, between Fe2 and Fe6. This occurs at the E4 stage of the complete mechanism. Exploration of possible reactions of N2 in this space leads to the conclusion that the first reaction step is transfer of H on Fe7 to one end of N2-ready, soon followed by Fe-N bond formation, and then a second H transfer from bridging S2BH to the other N. Two H-N bonds and one or two N-Fe bonds are formed, in some cases with a single transition state. The variable positions and orientations of N2-ready lead to various reaction trajectories and products. The favourable products resulting from this capture, judged by the criteria of reaction energies, reaction barriers, and mechanistic competence for further hydrogenation reactions in the nitrogenase cycle, have Fe2-NH-NH bonding. The trajectory of one N2 capture reaction is described in detail, and calculations that separate the H atom component and the 'heavy atom' components of the classical activation energy are described, in the context of possible H atom tunneling in the activation of N2-ready. I present arguments for the activation of N2 by the pathway of concerted hydrogenation and binding of N2-ready, alternative to the commonly assumed pathway of binding N2 first, with subsequent hydrogenation. The active site of nitrogenase is well primed for the thermodynamic and kinetic advantages of N2 capture.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Ismael M, Wark M. A recent review on photochemical and electrochemical nitrogen reduction to ammonia: Strategies to improve NRR selectivity and faradaic efficiency. APPLIED MATERIALS TODAY 2024; 39:102253. [DOI: 10.1016/j.apmt.2024.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Mondal T, Leitner W, Hölscher M. Computational design of cooperatively acting molecular catalyst systems: carbene based tungsten- or molybdenum-catalysts with rhodium- or iridium-complexes for the ionic hydrogenation of N 2 to NH 3. Dalton Trans 2024; 53:7890-7898. [PMID: 38634911 DOI: 10.1039/d4dt00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This density functional theory (DFT) study explores the efficacy of cooperative catalytic systems in enabling the ionic hydrogenation of N2 with H2, leading to NH3 formation. A set of N-heterocyclic carbene-based pincer tungsten/molybdenum metal complexes of the form [(PCP)M1(H)2] (M1 = W/Mo) were chosen to bind N2 at the respective metal centres. Simultaneously, cationic rhodium/iridium complexes of type [Cp*M2{2-(2-pyridyl)phenyl}(CH3CN)]+ (Cp* = C5(CH3)5 and M2 = Rh/Ir), are employed as cooperative coordination partners for heterolytic H2 splitting. The stepwise transfer of protons and hydrides to the bound N2 and intermediate NxHy units results in the formation of NH3. Interestingly, the calculated results reveal an encouraging low range of energy spans ranging from ∼30 to 42 kcal mol-1 depending on different combinations of ligands and metal complexes. The optimal combination of pincer ligand and metal center allowed for an energy span of unprecedented 29.7 kcal mol-1 demonstrating significant potential for molecular catalysts for the N2/H2 reaction system. While exploring obvious potential off-cycle reactions leading to catalyst deactivation, the computed results indicate that no increase in energy span would need to be expected.
Collapse
Affiliation(s)
- Totan Mondal
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Ding YQ, Zhang FX, Li Y, Ma JB. Manipulating Reactivity of Ir(CH 2) 0-2+ Cations toward Dinitrogen at Room Temperature: A Unique Dependence on the Organic Ligand Structures. J Phys Chem A 2024; 128:449-455. [PMID: 38174707 DOI: 10.1021/acs.jpca.3c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nitrogen (N2) activation at room temperature has long been a great challenge. Therefore, the rational design of reactive species to adsorb N2, which is a prerequisite for cleavage of the strong N≡N triple bond in industrial and biological processes, is highly desirable and meaningful. Herein, the N2 adsorption process is controlled by regulating the types and numbers of organic ligands, and the organic ligands are produced through the reactions of Ir+ with methane and ethane. CH4 molecules dissociate on the Ir+ cations to form Ir(CH2)1,2+. The reaction of Ir+ with C2H6 can generate HIrC2H3+, which is different from the structure of Ir(CH2)2+ obtained from Ir+/CH4. The reactivity order of N2 adsorption is Ir(CH2)2+ > HIrC2H3+ ≫ HIrCH+ ≈ Ir+ (almost inert under similar reaction conditions), indicating that different organic ligand structures affect reactivity dramatically. The main reason for this interesting reactivity difference is that the lowest unoccupied molecular orbital (LUMO) level of Ir(CH2)2+ is much closer to the highest occupied molecular orbital (HOMO) level of N2 than those of the other three systems. This study provides new insights into the adsorption of N2 on metal-organic ligand species, in which the organic ligand dominates the reactivity, and it discovers new clues in designing effective transition metal carbine species for N2 activation.
Collapse
Affiliation(s)
- Yong-Qi Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Feng-Xiang Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ying Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
8
|
Wang GX, Yin ZB, Wei J, Xi Z. Dinitrogen Activation and Functionalization Affording Chromium Diazenido and Hydrazido Complexes. Acc Chem Res 2023; 56:3211-3222. [PMID: 37937752 PMCID: PMC10666292 DOI: 10.1021/acs.accounts.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
ConspectusThe activation and functionalization of N2 to form nitrogen-element bonds have long posed challenges to industrial, biological, and synthetic chemists. The first transition-metal dinitrogen complex prepared by Allen and Senoff in 1965 provoked researchers to explore homogeneous N2 fixation. Despite intensive research in the last six decades, efficient and quantitative conversion of N2 to diazenido and hydrazido species remains problematic. Relative to a plethora of reactions to generate N2 complexes, their functionalization reactions are rather rare, and the yields are often unsatisfactory, emphasizing the need for systematic investigations of the reaction mechanisms.In this Account, we summarize our recent work on the synthesis, spectroscopic features, electronic structures, and reactivities of several Cr-N2 complexes. Initially, a series of dinuclear and trinuclear Cr(I)-N2 complexes bearing cyclopentadienyl-phosphine ligands were accessed. However, they cannot achieve N2 functionalization but undergo oxidative addition reactions with phenylsilane, azobenzene, and other unsaturated organic compounds at the low-valent Cr(I) centers rather than at the N2 unit. Further reduction of these Cr(I) complexes leads to the formation of more activated mononuclear Cr(0) bis-dinitrogen complexes. Remarkably, silylation of the cyclopentadienyl-phosphine Cr(0)-N2 complex with Me3SiCl afforded the first Cr hydrazido complex. This process follows the distal pathway to functionalize the Nβ atom twice, yielding an end-on η1-hydrazido complex, Cr(III)═N-N(SiMe3)2. In contrast, upon substitution of the phosphine ligand in the Cr(0)-N2 complex with a N-heterocyclic carbene (NHC) ligand, the corresponding reaction with Me3SiCl proceeds via the alternating pathway; the silylation occurs at both Nα and Nβ atoms and generates a side-on η2-hydrazido complex, Cr(III)(η2-Me3SiN-NSiMe3). Both silylation reactions are inevitably accompanied by the formation of Cr(III) hydrazido complexes and Cr(II) chlorides with a 2:1 ratio. These processes exhibit a peculiar '3-4-2-1' stoichiometry (i.e., treating 3 equiv of Cr(0)-N2 complexes with 4 equiv of Me3SiCl yields 2 equiv of Cr(III) disilyl-hydrazido complexes and 1 equiv of Cr(II) chloride). Upon replacing the monodentate phosphine and/or NHC ligand with a bisphosphine ligand, a monodinitrogen Cr(0) complex, instead of the bis-dinitrogen Cr(0) complexes, is obtained; consequently, the silylation reactions progress via the normal two-electron route, which passes through Cr(II)-N═N-R diazenido species as an intermediate and furnishes [Cr(IV)═N-NR2]+ hydrazido as the final products. More importantly, this type of Cr(0)-N2 complex can be not only silylated but also protonated and alkylated proficiently. All of the second-order reaction rates of the first and second transformations are determined along with the lifetimes of the intervening diazenido species. Based on these findings, we have successfully carried out nearly quantitative preparations of the Cr(IV) hydrazido species with unmixed or hybrid substituents.The studies of Cr-N2 systems provide effective approaches for the activation and functionalization of N2, deepening the understanding of N2 electrophilic attack. We hope that this Account will inspire more discoveries related to the transformation of gaseous N2 to high-value-added nitrogen-containing organic compounds.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhu-Bao Yin
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Boyd EA, Peters JC. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and p Ka. J Am Chem Soc 2023; 145:14784-14792. [PMID: 37376713 PMCID: PMC11668122 DOI: 10.1021/jacs.3c03352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Controlling product selectivity in multiproton, multielectron reductions of unsaturated small molecules is of fundamental interest in catalysis. For the N2 reduction reaction (N2RR) in particular, parameters that dictate selectivity for either the 6H+/6e- product ammonia (NH3) or the 4H+/4e- product hydrazine (N2H4) are poorly understood. To probe this issue, we have developed conditions to invert the selectivity of a tris(phosphino)borane iron catalyst (Fe), with which NH3 is typically the major product of N2R, to instead favor N2H4 as the sole observed fixed-N product (>99:1). This dramatic shift is achieved by replacing moderate reductants and strong acids with a very strongly reducing but weakly acidic SmII-(2-pyrrolidone) core supported by a hexadentate dianionic macrocyclic ligand (SmII-PH) as the net hydrogen-atom donor. The activity and efficiency of the catalyst with this reagent remain high (up to 69 equiv of N2H4 per Fe and 67% fixed-N yield per H+). However, by generating N2H4 as the kinetic product, the overpotential of this Sm-driven reaction is 700 mV lower than that of the mildest reported set of NH3-selective conditions with Fe. Mechanistic data support assignment of iron hydrazido(2-) species FeNNH2 as selectivity-determining: we infer that protonation of FeNNH2 at Nβ, favored by strong acids, releases NH3, whereas one-electron reduction to FeNNH2-, favored by strong reductants such as SmII-PH, produces N2H4 via reactivity initiated at Nα. Spectroscopic data also implicate a role for SmIII-binding to anionic FeN2- (via an Fe-N2- -SmIII species) with respect to catalytic efficacy.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
10
|
Huang Z, Rafiq M, Woldu AR, Tong QX, Astruc D, Hu L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.,Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Hassan Masood
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Rutvij Pankaj Kulkarni
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
12
|
Kireev NV, Filippov OA, Epstein LM, Shubina ES, Belkova NV. Activation of dinitrogen by group 6 metal complexes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Hui X, Wang L, Yao Z, Hao L, Sun Z. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 2022; 10:978078. [PMID: 36072702 PMCID: PMC9441816 DOI: 10.3389/fchem.2022.978078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber–Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Sun
- *Correspondence: Leiduan Hao, ; Zhenyu Sun,
| |
Collapse
|
14
|
Dey S, Kasai T, Katayama A. Promotion of Nitrogen Fixation of Diverse Heterotrophs by Solid-Phase Humin. Front Microbiol 2022; 13:853411. [PMID: 35992702 PMCID: PMC9389315 DOI: 10.3389/fmicb.2022.853411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Although biological nitrogen fixation (BNF) proceeds under mild conditions compared to the energy-intensive Haber–Bosch process, the slow kinetics of BNF necessitate the promotion of BNF activity in its practical application. The BNF promotion using purified nitrogenases and using genetically modified microorganisms has been studied, but these enzymes are unstable and expensive; moreover, designing genetically modified microorganisms is also a difficult task. Alternatively, the BNF promotion in non-modified (wild-type) microorganisms (enriched consortia) with humin has been shown, which is a humic substance insoluble at any pH and functions as an extracellular electron mediator. However, the taxonomic distribution of the diazotrophs promoted by humin, the levels of BNF promotion, and the underlying mechanism in BNF promotion with humin remain unknown. In this study, we show that taxonomically diverse heterotrophic diazotrophs, harboring nifH clusters I, II, and III, promoted their BNF by accepting extracellular electrons from humin, based on the characterization of the individual responses of isolated diazotrophs to humin. The reduced humin increased the acetylene reduction activity of the diazotrophs by 194–916% compared to the level achieved by the organic carbon source, causing adenosine triphosphate (ATP) synthesis in the diazotroph cells without increase in the CO2 production and direct electron donation to the MoFe protein of the nitrogenase in the cells without relying on the biological electron transfer system. These would result in BNF promotion in the wild-type diazotroph cells beyond their biochemical capacity. This significant promotion of BNF with humin would serve as a potential basis for sustainable technology for greener nitrogen fixation.
Collapse
Affiliation(s)
- Sujan Dey
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Takuya Kasai
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Arata Katayama
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
- *Correspondence: Arata Katayama
| |
Collapse
|
15
|
Sun X, Huang X. Reaction of Ta 3 - Clusters with Molecular Nitrogen: A Mechanism Investigation. ACS OMEGA 2022; 7:22682-22688. [PMID: 35811866 PMCID: PMC9260930 DOI: 10.1021/acsomega.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Because of the inertness of molecular nitrogen, its practicable activation under mild conditions is a fundamental challenge. Ta3 - is an exceptionally small cluster that reacts with N2 at room temperature, leading finally to Ta3N2 -; Ta3N2 - also could react with N2 at room temperature, leading finally to Ta3N4 -, a product of interest in its own right because of its potential as a nitrogen fixation medium. The mechanisms of the Ta3 -- and Ta3N2 --mediated activation of the N≡N triple bond have been investigated. Our extensive computations elucidate mechanisms for the ready reactions, leading to stepwise cleavage of the N≡N bond. Initial isomeric N2/Ta3 - complexes, N≡N elongation, undergo a N≡N split over generally low barriers in a highly exothermic process. The nitrogen-atom or molecular exchange reactions found in the Ta3N2 -/N2 system may be of paramount importance in both applied and fundamental studies.
Collapse
Affiliation(s)
- Xiaoli Sun
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| | - Xuri Huang
- Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, People’s
Republic of China
| |
Collapse
|
16
|
Zhang L, Hou S, Wang T, Liu S, Gao X, Wang C, Wang G. Recent Advances in Application of Graphitic Carbon Nitride-Based Catalysts for Photocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202252. [PMID: 35710700 DOI: 10.1002/smll.202202252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Ammonia, the second most-produced chemical, is widely used in agricultural and industrial applications. However, traditional industrial ammonia production dominated by the Haber-Bosch process presents huge resource and environment issues due to the massive energy consumption and CO2 emission. The newly emerged nitrogen fixation technology, photocatalytic N2 reduction reaction (p-NRR), uses clean solar energy with zero-emission, holding great prospect to achieve sustainable ammonia synthesis. Although great efforts are made, the p-NRR catalysts still suffer from poor N2 adsorption and activation, inferior light absorption, and fast recombination of photocarriers. Due to the tunable electronic structure of the metal-free polymeric graphitic carbon nitride (g-C3 N4 ), the above-mentioned issues can be significantly alleviated, making it the most promising p-NRR photocatalyst. This review summarizes the recent development of g-C3 N4 -based catalysts for p-NRR, including the working principle of p-NRR catalysts, the challenges of developing p-NRR catalysts, and corresponding solutions. Particularly, the roles of defect engineering and heterojunction construction on g-C3 N4 to the enhancement of photocatalytic performances are emphasized. In addition, computational studies are introduced to deepen the understanding of reaction pathways. At last, perspectives are provided on the development of p-NRR catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaoqi Hou
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Tianyi Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Sixiao Liu
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaochun Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264000, China
| | - Chengyin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
17
|
Kaiprathu A, Velayudham P, Teller H, Schechter A. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Devi K, Gorantla SMNVT, Mondal KC. EDA-NOCV analysis of carbene-borylene bonded dinitrogen complexes for deeper bonding insight: A fair comparison with a metal-dinitrogen system. J Comput Chem 2022; 43:757-777. [PMID: 35289411 DOI: 10.1002/jcc.26832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/09/2023]
Abstract
Binding of dinitrogen (N2 ) to a transition metal center (M) and followed by its activation under milder conditions is no longer impossible; rather, it is routinely studied in laboratories by transition metal complexes. In contrast, binding of N2 by main group elements has been a challenge for decades, until very recently, an exotic cAAC-borylene (cAAC = cyclic alkyl(amino) carbene) species showed similar binding affinity to kinetically inert and non-polar dinitrogen (N2 ) gas under ambient conditions. Since then, N2 binding by short lived borylene species has made a captivating news in different journals for its unusual features and future prospects. Herein, we carried out different types of DFT calculations, including EDA-NOCV analysis of the relevant cAAC-boron-dinitrogen complexes and their precursors, to shed light on the deeper insight of the bonding secret (EDA-NOCV = energy decomposition analysis coupled with natural orbital for chemical valence). The hidden bonding aspects have been uncovered and are presented in details. Additionally, similar calculations have been carried out in comparison with a selected stable dinitrogen bridged-diiron(I) complex. Singlet cAAC ligand is known to be an exotic stable species which, combined with the BAr group, produces an intermediate singlet electron-deficient (cAAC)(BAr) species possessing a high lying HOMO suitable for overlapping with the high lying π*-orbital of N2 via effective π-backdonation. The BN2 interaction energy has been compared with that of the FeN2 bond. Our thorough bonding analysis might answer the unasked questions of experimental chemists about how boron compounds could mimic the transition metal of dinitrogen binding and activation, uncovering hidden bonding aspects. Importantly, Pauling repulsion energy also plays a crucial role and decides the binding efficiency in terms of intrinsic interaction energy between the boron-center and the N2 ligand.
Collapse
Affiliation(s)
- Kavita Devi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | | | |
Collapse
|
20
|
Bachman B, Zhu D, Bandy J, Zhang L, Hamers RJ. Detection of Aqueous Solvated Electrons Produced by Photoemission from Solids Using Transient Absorption Measurements. ACS MEASUREMENT SCIENCE AU 2022; 2:46-56. [PMID: 36785590 PMCID: PMC9838729 DOI: 10.1021/acsmeasuresciau.1c00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solvated electrons in water have long been of interest to chemists. While readily produced using intense multiphoton excitation of water and/or irradiation with high-energy particles, the possible role of solvated electrons in electrochemical and photoelectrochemical reactions at electrodes has been controversial. Recent studies showed that excitation of electrons to the conduction band of diamond leads to barrier-free emission of electrons into water. While these electrons can be inferred from the reactions they induce, direct detection by transient absorption measurements provides more direct evidence. Here, we present studies demonstrating direct detection of solvated electrons produced at diamond electrode surfaces and the influence of electrochemical potential and solution-phase electron scavengers. We further present a more detailed analysis of experimental conditions needed to detect solvated electrons emitted from diamond and other solid materials through transient optical absorption measurements.
Collapse
|
21
|
Karnamkkott HS, Gorantla SMNVT, Devi K, Tiwari G, Mondal KC. Bonding and stability of dinitrogen-bonded donor base-stabilized Si(0)/Ge(0) species [(cAAC Me-Si/Ge) 2(N 2)]: EDA-NOCV analysis. RSC Adv 2022; 12:4081-4093. [PMID: 35425464 PMCID: PMC8981037 DOI: 10.1039/d1ra07714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, dinitrogen (N2) binding and its activation have been achieved by non-metal compounds like intermediate cAAC-borylene as (cAAC)2(B-Dur)2(N2) [cAAC = cyclic alkyl(amino) carbene; Dur = aryl group, 2,3,5,6-tetramethylphenyl; B-Dur = borylene]. It has attracted a lot of scientific attention from different research areas because of its future prospects as a potent species towards the metal free reduction of N2 into ammonia (NH3) under mild conditions. Two (cAAC)(B-Dur) units, each of which possesses six valence electrons around the B-centre, are shown to accept σ-donations from the N2 ligand (B ← N2). Two B-Dur further provide π-backdonations (B → N2) to a central N2 ligand to strengthen the B–N2–B bond, providing maximum stability to the compound (cAAC)2(B-Dur)2(N2) since the summation of each pair wise interaction accounted for the total stabilization energy of the molecule. (cAAC)(B-Dur) unit is isolobal to cAAC–E (E = Si, Ge) fragment. Herein, we report on the stability and bonding of cAAC–E bonded N2-complex (cAAC–E)2(N2) (1–2; Si, Ge) by NBO, QTAIM and EDA-NOCV analyses (EDA-NOCV = energy decomposition analysis coupled with natural orbital for chemical valence; QTAIM = quantum theory of atoms in molecule). Our calculation suggested that syntheses of elusive (cAAC–E)2(N2) (1–2; Si, Ge) species may be possible with cAAC ligands having bulky substitutions adjacent to the CcAAC atom by preventing the homo-dimerization of two (cAAC)(E) units which can lead to the formation of (cAAC–E)2. The formation of E
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
E bond is thermodynamically more favourable (E = Si, Ge) over binding energy of N2 inbetween two cAAC–E units. Dinitrogen (N2) binding and its activation have been achieved by non-metal compounds like intermediate cAACborylene with the general formula of (cAAC)2(B-Dur)2(N2) [cAAC = cyclic alkyl(amino)carbene; Dur = aryl group, 2,3,5,6-tetramethylphenyl; B-Dur = aryl-borylene].![]()
Collapse
Affiliation(s)
- Harsha S Karnamkkott
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | | | - Kavita Devi
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Geetika Tiwari
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | | |
Collapse
|
22
|
Dinitrogen Binding Relevant to FeMoco of Nitrogenase: Clear Visualization of σ‐Donation and π‐Backdonation from Deformation Electron Densities around Carbon/Silicon‐Iron Site. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Bonitatibus PJ, Alvarez S, Armstrong WH, Baldansuren A, Gaspard ME, Lakshmi KV, Ziegler MS, Charles P. Synthesis, Crystal Structure, EPR, and DFT Studies of an Unusually Distorted Vanadium(II) Complex. Dalton Trans 2022; 51:12031-12036. [DOI: 10.1039/d2dt02392j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a synthesis and structure of the most highly distorted four-coordinate d3 ion known to date that also serves as the second known example of a bis(biphenolato) transition metal...
Collapse
|
24
|
Gorantla SMNVT, Chandra Mondal K. Estimations of Fe0/−1–N2 interaction energies of iron(0)-dicarbene and its reduced analogue by EDA-NOCV analyses: crucial steps in dinitrogen activation under mild conditions. RSC Adv 2022; 12:3465-3475. [PMID: 35425364 PMCID: PMC8979315 DOI: 10.1039/d1ra08348a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Metal complexes containing low valence iron atoms are often experimentally observed to bind with the dinitrogen (N2) molecule. This phenomenon has attracted the attention of industrialists, chemists and bio-chemists since these N2-bonded iron complexes can produce ammonia under suitable chemical or electrochemical conditions. The higher binding affinity of the Fe-atom towards N2 is a bit ‘mysterious’ compared to that of the other first row transition metal atoms. Fine powders of α-Fe0 are even part of industrial ammonia production (Haber–Bosch process) which operates at high temperature and high pressure. Herein, we report the EDA-NOCV analyses of the previously reported dinitrogen-bonded neutral molecular complex (cAACR)2Fe0–N2 (1) and mono-anionic complex (cAACR)2Fe−1–N2 (2) to give deeper insight of the Fe–N2 interacting orbitals and corresponding pairwise intrinsic interaction energies (cAACR = cyclic alkyl(amino) carbene; R = Dipp or Me). The Fe0 atom of 1 prefers to accept electron densities from N2via σ-donation while the comparatively electron rich Fe−1 centre of 2 donates electron densities to N2via π-backdonation. However, major stability due to the formation of an Fe–N2 bond arises due to Fe → N2 π-backdonation in both 1 and 2. The cAACR ligands act as a charge reservoir around the Fe centre. The electron densities drift away from cAAC ligands during the binding of N2 molecules mostly via π-backdonation. EDA-NOCV analysis suggests that N2 is a stronger π-acceptor rather than a σ-donor. The stable Fe–N2 bond of stable complex should have a sufficiently high interaction energy.![]()
Collapse
Affiliation(s)
| | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
25
|
Gorantla SMVT, Mondal KC. EDA-NOCV Calculation for Efficient N 2 Binding to the Reduced Ni 3S 8 Complex: Estimation of Ni-N 2 Intrinsic Interaction Energies. ACS OMEGA 2021; 6:33389-33397. [PMID: 34926888 PMCID: PMC8674922 DOI: 10.1021/acsomega.1c03715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The binding of the dinitrogen molecule to the metal center is the first and crucial step toward dinitrogen activation. Favorable interaction energies are desired by chemists and biochemists to study model complexes in the laboratory. An electrochemically reduced form of a previously isolated sulfur-bridged Ni3S8 complex is inferred to bind N2 at multiple Ni centers, and this bonded N2 undergoes reductive protonation to produce hydrazine (N2H4) as the product in the presence of a proton donor. Density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) analysis have been carried out to shed light on the nature of N2 binding to an anionic trinuclear Ni3S8 complex. Additionally, energy decomposition analysis with the combination of natural orbital for chemical valence (EDA-NOCV) analysis has been performed to estimate the pairwise interaction energies between the Ni center and the N2 molecule under experimental conditions.
Collapse
|
26
|
Gorantla SMVT, Mondal KC. Estimations of Fe-N 2 Intrinsic Interaction Energies of Iron-Sulfur/Nitrogen-Carbon Sites: A Deeper Bonding Insight by EDA-NOCV Analysis of a Model Complex of the Nitrogenase Cofactor. ACS OMEGA 2021; 6:33932-33942. [PMID: 34926940 PMCID: PMC8675039 DOI: 10.1021/acsomega.1c05238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The MoFe7S9C1- unit of the nitrogenase cofactor (FeMoco) attracts chemists and biochemists due to its unusual ability to bind aerial dinitrogen (N2) at ambient condition and catalytically convert it into ammonia (NH3). The mode of N2 binding and its reaction pathways are yet not clear. An important conclusion has been made based on the very recent synthesis and isolation of model Fe(I/0)-complexes with sulfur-donor ligands under the cleavage of one Fe-S bond followed by binding of N2 at the Fe(0) center. These complexes are structurally relevant to the nitrogenase cofactor (MoFe7S9C1-). Herein, we report the EDA-NOCV analyses and NICS calculations of the dinitrogen-bonded dianionic complex Fe0-N2 (1) (having a CAr ← Fe π-bond) and monoanionic complex FeI-N2 (2) (having a CAr-Fe σ-bond) to provide a deeper insight into the Fe-N2 interacting orbitals and corresponding pairwise interaction energies (EDA-NOCV = energy decomposition analysis coupled with natural orbital for chemical valence; NICS = nucleus-independent chemical shifts). The orbital interaction in the Fe-N2 bond is significantly larger than Coulombic interactions, with major pairwise contributions coming from d(Fe) orbitals to the empty π* orbitals of N2 (three Fe → N2). ΔE int values are in the range of -61 to -77 kcal mol-1. Very interestingly, NICS calculations have been carried out for the fragments before and after binding of the N2 molecule. The computed σ- and π-aromaticity values are attributed to the position of the Fe atoms, oxidation states of Fe centers, and Fe-C bond lengths of these two complexes.
Collapse
|
27
|
Kozlova EA, Lyulyukin MN, Kozlov DV, Parmon VN. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the current knowledge about heterogeneous semiconductor photocatalysts that are active towards photocatalytic reduction of carbon dioxide and molecular nitrogen under visible and near-UV light. The main classes of these photocatalysts and characteristic features of their application in the target processes are considered. Primary attention is given to photocatalysts based on titanium dioxide, which have high activity and stability in the carbon dioxide reduction. For the first time, the photofixation of nitrogen under irradiation in the presence of various semiconductor materials is considered in detail.
The bibliography includes 264 references.
Collapse
|
28
|
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev 2021; 50:12744-12787. [PMID: 34647937 DOI: 10.1039/d1cs00120e] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Collapse
Affiliation(s)
- Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
29
|
Li Y, Zhang Q, Mei Z, Li S, Luo W, Pan F, Liu H, Dou S. Recent Advances and Perspective on Electrochemical Ammonia Synthesis under Ambient Conditions. SMALL METHODS 2021; 5:e2100460. [PMID: 34927956 DOI: 10.1002/smtd.202100460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Ammonia is an essential chemical for agriculture and industry. To date, NH3 is mainly supplied by the traditional Haber-Bosch process, which is operated under high-temperature and high-pressure in a centralized way. To achieve ammonia production in an environmentally benign way, electrochemical NH3 synthesis under ambient conditions has become the frontier of energy and chemical conversion schemes, as it can be powered by renewable energy and operates in a decentralized way. The recent progress on developing different strategies for NH3 production, including 1) classic NH3 synthesis pathways over nanomaterials; 2) the Mars-van Krevelen (MvK) mechanism over metal nitrides (MNx ); 3) reducing the nitrate into NH3 over Cu-based nanomaterial; and 4) metal-N2 battery release of NH3 from Lix M. Moreover, the most recent advances in engineering strategies for developing highly active materials and the design of the reaction systems for NH3 synthesis are covered.
Collapse
Affiliation(s)
- Yang Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Qi Zhang
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zongwei Mei
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Wenbin Luo
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
30
|
Zhao X, Hu G, Chen GF, Zhang H, Zhang S, Wang H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007650. [PMID: 34197001 DOI: 10.1002/adma.202007650] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
The electrochemical method of combining N2 and H2 O to produce ammonia (i.e., the electrochemical nitrogen reduction reaction [E-NRR]) continues to draw attention as it is both environmentally friendly and well suited for a progressively distributed farm economy. Despite the multitude of recent works on the E-NRR, further progress in this field faces a bottleneck. On the one hand, despite the extensive exploration and trial-and-error evaluation of E-NRR catalysts, no study has stood out to become the stage protagonist. On the other hand, the current level of ammonia production (microgram-scale) is an almost insurmountable obstacle for its qualitative and quantitative determination, hindering the discrimination between true activity and contamination. Herein i) the popular theory and mechanism of the NRR are introduced; ii) a comprehensive summary of the recent progress in the field of the E-NRR and related catalysts is provided; iii) the operational procedures of the E-NRR are addressed, including the acquisition of key metrics, the challenges faced, and the most suitable solutions; iv) the guiding principles and standardized recommendations for the E-NRR are emphasized and future research directions and prospects are provided.
Collapse
Affiliation(s)
- Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
31
|
Wang YY, Ding XL, Israel Gurti J, Chen Y, Li W, Wang X, Wang WJ, Deng JJ. Non-Dissociative Activation of Chemisorbed Dinitrogen on One or Two Vanadium Atoms Supported by a Mo 6 S 8 Cluster. Chemphyschem 2021; 22:1645-1654. [PMID: 34050588 DOI: 10.1002/cphc.202100195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/24/2021] [Indexed: 01/19/2023]
Abstract
Adsorption of N2 on Mo6 S8 q _Vx clusters (x=0, 1, 2; q=0, ±1) were systematically studied by density functional theory calculations with dispersion corrections. It was found that the N2 can be chemisorbed and undergo non-dissociative activation on single or double metal atoms. The adsorption and activation are influenced by metal types (V or Mo), N2 coordination modes and charge states of the clusters. Particularly, anionic Mo6 S8 - _V2 clusters have remarkable ability to fix and activate N2 . In Mo6 S8 - _V2 , two V atoms prefer to adsorb on two adjacent S-Mo-S hollow sites, leading to the formation of a supported V…V unit. The N2 is bridged side-on coordinated with these two V atoms with high adsorption energy and significant charge transfer. The bond order, bond length and vibration frequency of the adsorbed N2 are close to those of a N-N single bond.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Joseph Israel Gurti
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Wen-Jie Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Jia-Jun Deng
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| |
Collapse
|
32
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen‐Bridged Dirhenium Complex Bearing PNP‐Pincer Ligands under Mild Reaction Conditions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University Minami-ku Nagoya 457-8530 Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
33
|
Meng F, Kuriyama S, Tanaka H, Egi A, Yoshizawa K, Nishibayashi Y. Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions*. Angew Chem Int Ed Engl 2021; 60:13906-13912. [PMID: 33835664 DOI: 10.1002/anie.202102175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Indexed: 01/07/2023]
Abstract
A series of rhenium complexes bearing a pyridine-based PNP-type pincer ligand are synthesized from rhenium phosphine complexes as precursors. A dinitrogen-bridged dirhenium complex bearing the PNP-type pincer ligands catalytically converts dinitrogen into ammonia during the reaction with KC8 as a reductant and [HPCy3 ]BArF 4 (Cy=cyclohexyl, ArF =3,5-(CF3 )2 C6 H3 ) as a proton source at -78 °C to afford 8.4 equiv of ammonia based on the rhenium atom of the catalyst. The rhenium-dinitrogen complex also catalyzes silylation of dinitrogen in the reaction with KC8 as a reductant and Me3 SiCl as a silylating reagent under ambient reaction conditions to afford 11.7 equiv of tris(trimethylsilyl)amine based on the rhenium atom of the catalyst. These results demonstrate the first successful example of catalytic nitrogen fixation under mild reaction conditions using rhenium-dinitrogen complexes as catalysts.
Collapse
Affiliation(s)
- Fanqiang Meng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, 457-8530, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
34
|
Mansingh S, Das KK, Sultana S, Parida K. Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
36
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
37
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
38
|
Mallamace D, Papanikolaou G, Perathoner S, Centi G, Lanzafame P. Comparing Molecular Mechanisms in Solar NH 3 Production and Relations with CO 2 Reduction. Int J Mol Sci 2020; 22:E139. [PMID: 33375617 PMCID: PMC7795446 DOI: 10.3390/ijms22010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms for N2 fixation (solar NH3) and CO2 conversion to C2+ products in enzymatic conversion (nitrogenase), electrocatalysis, metal complexes and plasma catalysis are analyzed and compared. It is evidenced that differently from what is present in thermal and plasma catalysis, the electrocatalytic path requires not only the direct coordination and hydrogenation of undissociated N2 molecules, but it is necessary to realize features present in the nitrogenase mechanism. There is the need for (i) a multi-electron and -proton simultaneous transfer, not as sequential steps, (ii) forming bridging metal hydride species, (iii) generating intermediates stabilized by bridging multiple metal atoms and (iv) the capability of the same sites to be effective both in N2 fixation and in COx reduction to C2+ products. Only iron oxide/hydroxide stabilized at defective sites of nanocarbons was found to have these features. This comparison of the molecular mechanisms in solar NH3 production and CO2 reduction is proposed to be a source of inspiration to develop the next generation electrocatalysts to address the challenging transition to future sustainable energy and chemistry beyond fossil fuels.
Collapse
Affiliation(s)
| | | | | | - Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| | - Paola Lanzafame
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| |
Collapse
|
39
|
Patil SB, Wang DY. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002885. [PMID: 32945097 DOI: 10.1002/smll.202002885] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
High demand for green ecosystems has urged the human community to reconsider and revamp the traditional way of synthesis of several compounds. Ammonia (NH3 ) is one such compound whose applications have been extended from fertilizers to explosives and is still being synthesized using the high energy inhaling Haber-Bosch process. Carbon free electrocatalytic nitrogen reduction reaction (NRR) is considered as a potential replacement for the Haber-Bosch method. However, it has few limitations such as low N2 adsorption, selectivity (competitive HER reactions), low yield rate etc. Since it is at the early stage, tremendous efforts have been devoted in understanding the reaction mechanism and screening of the electrocatalysts and electrolytes. In this review, the electrocatalysts are classified based on the periodic table with heat maps of Faraday efficiency and yield rate of NH3 in NRR and their electrocatalytic properties toward NRR are discussed. Also, the activity of each element is discussed and short tables and concise graphs are provided to enable the researchers to understand recent progress on each element. At the end, a perspective is provided on countering the current challenges in NRR. This review may act as handbook for basic NRR understandings, recent progress in NRR, and the design and development of advanced electrocatalysts and systems.
Collapse
Affiliation(s)
- Shivaraj B Patil
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| |
Collapse
|
40
|
Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond. MATERIALS 2020; 13:ma13204559. [PMID: 33066453 PMCID: PMC7602236 DOI: 10.3390/ma13204559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Nitrogen impurity has been introduced in diamond film to produce a nitrogen vacancy center (NV center) toward the solvated electron-initiated reduction of N2 to NH3 in liquids, giving rise to extend the wavelength region beyond the diamond’s band. Scanning electron microscopy and X-ray diffraction demonstrate the formation of the nanocrystalline nitrogen-doped diamond with an average diameter of ten nanometers. Raman spectroscopy and PhotoLuminescence (PL) spectrum show characteristics of the NV0 and NV− charge states. Measurements of photocatalytic activity using supraband (λ < 225 nm) gap and sub-band gap (λ > 225 nm) excitation show the nitrogen-doped diamond significantly enhanced the ability to reduce N2 to NH3 compared to the polycrystalline diamond and single crystal diamond (SCD). Our results suggest an important process of internal photoemission, in which electrons are excited from negative charge states into conduction band edges, presenting remarkable photoinitiated electrons under ultraviolet and visible light. Other factors, including transitions between defect levels and processes of reaction, are also discussed. This approach can be especially advantageous to such as N2 and CO2 that bind only weakly to most surfaces and high energy conditions.
Collapse
|
41
|
Saha P, Amanullah S, Dey A. Electrocatalytic Reduction of Nitrogen to Hydrazine Using a Trinuclear Nickel Complex. J Am Chem Soc 2020; 142:17312-17317. [PMID: 33006899 DOI: 10.1021/jacs.0c08785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation and reduction of N2 have been a major challenge to chemists and the focus since now has mostly been on the synthesis of NH3. Alternatively, reduction of N2 to hydrazine is desirable because hydrazine is an excellent energy vector that can release the stored energy very conveniently without the need for catalysts. To date, only one molecular catalyst has been reported to be able to reduce N2 to hydrazine chemically. A trinuclear T-shaped nickel thiolate molecular complex has been designed to activate dinitrogen. The electrochemically generated all Ni(I) state of this molecule can reduce N2 in the presence of PhOH as a proton donor. Hydrazine is detected as the only nitrogen-containing product of the reaction, along with gaseous H2. The complex reported here is selective for the 4e-/4H+ reduction of nitrogen to hydrazine with a minor overpotential of ∼300 mV.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
42
|
One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element. Nat Chem 2020; 12:1076-1080. [DOI: 10.1038/s41557-020-0520-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/01/2020] [Indexed: 11/09/2022]
|
43
|
Tanifuji K, Ohki Y. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chem Rev 2020; 120:5194-5251. [DOI: 10.1021/acs.chemrev.9b00544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
44
|
Shi L, Yin Y, Wang S, Sun H. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01081] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Shi
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Yu Yin
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide South Australia 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
45
|
Yin H, Dou Y, Chen S, Zhu Z, Liu P, Zhao H. 2D Electrocatalysts for Converting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904870. [PMID: 31573704 DOI: 10.1002/adma.201904870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.
Collapse
Affiliation(s)
- Huajie Yin
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Shan Chen
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Zhengju Zhu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Porun Liu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
- Centre for Environmental and Energy Nanomaterials, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
46
|
Chalkley MJ, Drover MW, Peters JC. Catalytic N 2-to-NH 3 (or -N 2H 4) Conversion by Well-Defined Molecular Coordination Complexes. Chem Rev 2020; 120:5582-5636. [PMID: 32352271 DOI: 10.1021/acs.chemrev.9b00638] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. We end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcus W Drover
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Chalkley MJ, Peters JC. Relating N-H Bond Strengths to the Overpotential for Catalytic Nitrogen Fixation. Eur J Inorg Chem 2020; 2020:1353-1357. [PMID: 33071628 DOI: 10.1002/ejic.202000232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitrogen (N2) fixation to produce bio-available ammonia (NH3) is essential to all life but is a challenging transformation to catalyse owing to the chemical inertness of N2. Transition metals can, however, bind N2 and activate it for functionalization. Significant opportunities remain in developing robust and efficient transition metal catalysts for the N2 reduction reaction (N2RR). One opportunity to target in catalyst design concerns the stabilization of transition metal diazenido species (M-NNH) that result from the first N2 functionalization step. Well-characterized M-NNH species remain very rare, likely a consequence of their low N-H bond dissociation free energies (BDFEs). In this essay, we discuss the relationship between the BDFEN-H of a given M-NNH species to the observed overpotential and selectivity for N2RR catalysis with that catalyst system. We note that developing strategies to either increase the N-H BDFEs of M-NNH species, or to avoid M-NNH intermediates altogether, are potential routes to improved N2RR efficiency.
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
48
|
Andres SA, Bajaj K, Vishnosky NS, Peterson MA, Mashuta MS, Buchanan RM, Bates PJ, Grapperhaus CA. Synthesis, Characterization, and Biological Activity of Hybrid Thiosemicarbazone–Alkylthiocarbamate Metal Complexes. Inorg Chem 2020; 59:4924-4935. [DOI: 10.1021/acs.inorgchem.0c00182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah A. Andres
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Kritika Bajaj
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Nicholas S. Vishnosky
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan A. Peterson
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Mark S. Mashuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M. Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Paula J. Bates
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
49
|
Affiliation(s)
- Alexander J. Kendall
- Biomaterials and Biomechanics; Oregon Health and Science University; 97201 Portland OR USA
| | - Michael T. Mock
- Department of Chemistry and Biochemistry; Montana State University; 59717 Bozeman MT USA
| |
Collapse
|
50
|
Sivasankar C, Madarasi PK, Tamizmani M. Activation and Functionalization of Dinitrogen in the Presence of Molecular Hydrogen Promoted by Transition Metal Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chinnappan Sivasankar
- Catalysis and Energy Laboratory Department of Chemistry Pondicherry University R. V. Nagar 605 014 Puducherry India
| | | | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai P. R. China
| |
Collapse
|