1
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
2
|
Monier M, Courtier-Orgogozo V. Drosophila Glue: A Promising Model for Bioadhesion. INSECTS 2022; 13:734. [PMID: 36005360 PMCID: PMC9409817 DOI: 10.3390/insects13080734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The glue produced by Drosophila larvae to attach themselves to a substrate for several days and resist predation until the end of metamorphosis represents an attractive model to develop new adhesives for dry environments. The adhesive properties of this interesting material have been investigated recently, and it was found that it binds as well as strongly adhesive commercial tapes to various types of substrates. This glue hardens rapidly after excretion and is made of several proteins. In D. melanogaster, eight glue proteins have been identified: four are long glycosylated mucoproteins containing repeats rich in prolines, serines and threonines, and four others are shorter proteins rich in cysteines. This protein mix is produced by the salivary glands through a complex packaging process that is starting to be elucidated. Drosophila species have adapted to stick to various substrates in diverse environmental conditions and glue genes appear to evolve rapidly in terms of gene number, number of repeats and sequence of the repeat motifs. Interestingly, besides its adhesive properties, the glue may also have antimicrobial activities. We discuss future perspectives and avenues of research for the development of new bioadhesives mimicking Drosophila fly glue.
Collapse
|
3
|
Borne F, Kovalev A, Gorb S, Courtier-Orgogozo V. The glue produced by Drosophila melanogaster for pupa adhesion is universal. J Exp Biol 2020; 223:jeb220608. [PMID: 32165432 DOI: 10.1242/jeb.220608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Insects produce a variety of adhesives for diverse functions such as locomotion, mating, and egg or pupal anchorage to substrates. Although they are important for the biology of organisms and potentially represent a great resource for developing new materials, insect adhesives have been little studied so far. Here, we examined the adhesive properties of the larval glue of Drosophila melanogaster This glue is made of glycosylated proteins and allows the animal to adhere to a substrate during metamorphosis. We designed an adhesion test to measure the pull-off force required to detach a pupa from a substrate and to evaluate the contact area covered by the glue. We found that the pupa adheres with similar forces to a variety of substrates (with distinct roughness, hydrophilic and charge properties). We obtained an average pull-off force of 217 mN, corresponding to 15,500 times the weight of a pupa and an adhesion strength of 137-244 kPa. Surprisingly, the pull-off forces did not depend on the contact area. Our study paves the way for a genetic dissection of the components of D. melanogaster glue that confer its particular adhesive properties.
Collapse
Affiliation(s)
- Flora Borne
- Institut Jacques Monod, CNRS, Université de Paris, 75013 Paris, France
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | | |
Collapse
|
4
|
Kress H, Jarrin A, Thüroff E, Saunders R, Weise C, Schmidt am Busch M, Knapp EW, Wedde M, Vilcinskas A. A Kunitz type protease inhibitor related protein is synthesized in Drosophila prepupal salivary glands and released into the moulting fluid during pupation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:855-869. [PMID: 15262289 DOI: 10.1016/j.ibmb.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/04/2004] [Indexed: 05/24/2023]
Abstract
From the Drosophila virilis late puff region 31C, we microcloned two neighbouring genes, Kil-1 and Kil-2, that encode putative Kunitz serine protease inhibitor like proteins. The Kil-1 gene is expressed exclusively in prepupal salivary glands. Using a size mutant of the KIL-1 protein and MALDI-TOF analysis, we demonstrate that during pupation this protein is released from the prepupal salivary glands into the pupation fluid covering the surface of the pupa. 3-D-structure predictions are consistent with the known crystal structure of the human Kunitz type protease inhibitor 2KNT. This is the first experimental proof for the extracorporal presence of a distinct Drosophila prepupal salivary gland protein. Possible functions of KIL-1 in the context of the control of proteolytic activities in the pupation fluid are discussed.
Collapse
Affiliation(s)
- Horst Kress
- Institut für Biologie-Genetik, Freie Universität Berlin, Arnimallee 7, D-14195, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kress H, Kunze P, Swida U, Heiser V, Maletz S. Ecdysone-controlled mRNA stability in Drosophila salivary glands: deadenylation-independent degradation of larval glue protein gene message during the larval/prepupal transition. Mol Cell Endocrinol 2001; 182:129-44. [PMID: 11500246 DOI: 10.1016/s0303-7207(01)00494-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyecdysone induces poly(A) shortening and the subsequent degradation of transcripts encoding the larval glue protein LGP-1 in Drosophila virilis late third larval instar salivary glands. Degradation concurs with the transient increase of ribonucleolytic activities in the gland cells. In vitro nuclease assays using crude cytoplasmic extracts of ecdysone-treated salivary glands demonstrate degradation to be deadenylation-independent and that the induced ribonucleolytic activities initiate the degradation of the Lgp-1 transcripts in putative single-stranded loop regions. The independence of degradation from deadenylation is also found in vivo in transformed D. melanogaster carrying a modified Lgp-1 gene.
Collapse
Affiliation(s)
- H Kress
- Institut für Biologie-Genetik, Freie Universität Berlin, Arnimallee 7, D-14 195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
6
|
Theopold U, Dorian C, Schmidt O. Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:189-197. [PMID: 11164341 DOI: 10.1016/s0965-1748(00)00117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To explore a possible signal function of glycodeterminants and the tissue specificity of glycosylation in Drosophila melanogaster, hemomucin, a surface mucin previously isolated from cell lines was studied. It was shown to exist in two glycoforms with molecular masses of 100 and 105 kDa, respectively. The two forms differ by the presence of O-linked galactose, which was only detected in the larger glycoform using the beta-galactose specific peanut agglutinin (PNA). The 105 form was found in cell lines after addition of the cell cycle inhibitor taxol and after induction with ecdysone. When whole animal tissues were analyzed using PNA, dramatic changes were observed during development. We were able to identify a number of proteins, which showed strong PNA-staining in stages with a high ecdysone titer, while virtually no staining was detected in adults. This pattern was specific for PNA and was not observed with any of the other lectins employed in this study. Surprisingly, in contrast to our observation in cell lines, PNA staining of hemomucin was not observed in late third larval and pupal stages, which are known to produce high ecdysone titers. The only organ, in which significant amounts of the 105 form were detected, were the ovaries, where hemomucin is produced in follicle cells during the late phase of oogenesis and subsequently incorporated into the chorion.
Collapse
Affiliation(s)
- U Theopold
- Department of Applied and Molecular Ecology, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
7
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
März L, Altmann F, Staudacher E, Kubelka V. Chapter 10 Protein Glycosylation in Insects. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Lanio W, Swida U, Kress H. Molecular cloning of the Drosophila virilis larval glue protein gene Lgp-3 and its comparative analysis with other Drosophila glue protein genes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:576-80. [PMID: 7918662 DOI: 10.1016/0167-4781(94)90092-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA comprising the larval glue protein gene Lgp-3 of Drosophila virilis was isolated from a lambda genomic and a cDNA library. The transcription start site, two polyadenylation sites and the boundaries of the single intron were determined. An open reading frame encoding 379 amino acids was found. At the DNA level the presence of similar introns and three conserved sequence motifs in the proximal promoters suggest that the gene is related to those of the D. virilis lgp-1 and the D. melanogaster sgs-3, -7 and -8 glue proteins. Their common ancestry is also substantiated by the comparisons of the deduced amino acid sequences and the profiles of hydropathic indices, which reveal striking similarities of the N- and C-termini and of the central repeat domains, although the lengths and the primary structures of the proteins diverged considerably during 60 million years of separate evolution of the two Drosophila species.
Collapse
Affiliation(s)
- W Lanio
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
10
|
Kress H. The salivary gland chromosomes of Drosophila virilis: a cytological map, pattern of transcription and aspects of chromosome evolution. Chromosoma 1993; 102:734-42. [PMID: 8149815 DOI: 10.1007/bf00650901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By combining information from microscopical observation and photography a graphical map of Drosophila virilis salivary gland chromosomes was constructed. About 1,560 individual bands are shown and patterns of transcription at about 360 sites are indicated. The application of the map is demonstrated by using genetic, morphological and in situ hybridization data to identify the white-Notch regions of D. virilis and Drosophila melanogaster as homologous chromosome segments with constant and variable features.
Collapse
Affiliation(s)
- H Kress
- Genetisches Institut der Freien Universität Berlin, Germany
| |
Collapse
|
11
|
Thüroff E, Stöven S, Kress H. Drosophila salivary glands exhibit a regional reprogramming of gene expression during the third larval instar. Mech Dev 1992; 37:81-93. [PMID: 1606022 DOI: 10.1016/0925-4773(92)90017-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In D. virilis salivary glands transcripts of two early gland protein genes, Egp-1 and Egp-2, which encode putative secretory proteins, accumulate in all cells from the first to mid third larval instar. Subsequently the transcripts disappear from the cytoplasm of the corpus cells, but not from their nuclei, where they accumulate at the chromosomal site of their synthesis. In the collum cells, however, Egp-transcripts continue to be detectable in the cytoplasm until the end of larval life. In the salivary glands of transgenic D. melanogaster the presence of a Egp-1/lacZ fusion protein shows the same regional shift as the cytoplasmic Egp-transcripts in D. virilis. We predict that the expression of Egp-genes is related to an early secretory function of the larval salivary glands which is executed by all cells during earlier larval stages but becomes restricted exclusively to the collum cells during the third larval instar.
Collapse
Affiliation(s)
- E Thüroff
- Institut für Genetik, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
12
|
Thomsen DR, Post LE, Elhammer AP. Structure of O-glycosidically linked oligosaccharides synthesized by the insect cell line Sf9. J Cell Biochem 1990; 43:67-79. [PMID: 2112133 DOI: 10.1002/jcb.240430107] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The O-glycosidically linked oligosaccharides on the pseudorabies virus (PRV) glycoprotein gp50 synthesized by three different cell lines were studied. The intact membrane protein (gp50) was expressed in Vero cells and in the insect cell line Sf9. In addition, a truncated, secreted form lacking the transmembrane and cytoplasmic domains (gp50T), was expressed in CHO and Sf9 cells. The protein, both in intact and truncated form, synthesized by the two mammalian cells contained only the disaccharide Gal beta 1-3GalNAc, either unsubstituted or substituted with one or two sialic acid residues. By contrast, the major O-linked structure on gp50 and gp50T synthesized by Sf9 cells was the monosaccharide GalNAc. The Sf9 cells also linked lower amounts of Gal beta 1-3GalNAc to gp50 (12%) and gp50T (26%). None of the structures synthesized by Sf9 cells contained sialic acid. Measurements of the two relevant glycosyltransferases revealed that while all three cell lines contain comparable levels of UDP-GalNAc:polypeptide, N-acetylgalactosaminyltransferase activity, there is a greater variation in the levels of UDP-Gal:N-acetylgalactosamine, beta 1-3 galactosyltransferase, with the Sf9 cells containing the lowest level.
Collapse
|
13
|
Kress H. Stoffwechselaktivit�ten und Transkriptionsmuster in den larvalen Speicheldr�sen von Drosophila virilis. Naturwissenschaften 1986. [DOI: 10.1007/bf00417721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|