Black JA, Waxman SG, Sims TJ, Gilmore SA. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord.
JOURNAL OF NEUROCYTOLOGY 1986;
15:745-61. [PMID:
3819778 DOI:
10.1007/bf01625192]
[Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The macromolecular structure of axonal membrane from dorsal funiculi of control and irradiated spinal cord of 45-day-old rats was examined with freeze-fracture electron microscopy. In control spinal cords, virtually all myelination is mediated by oligodendrocytes, and the internodal axonal membrane of these fibres displays highly asymmetrical partitioning of intramembranous particles (IMPs). The internodal P-face particle density is approximately 2350IMPs per micron 2, whereas the E-face IMP density is approximately 150 per micron 2. In control dorsal spinal roots, myelination is mediated by Schwann cells, and the ultrastructure of the internodal axolemma of the myelinated fibres is similar to that displayed by myelinated fibres of dorsal funiculi. On the internodal P-face of Schwann cell-myelinated fibres the IMP density is approximately 2350 per micron 2, whereas on the E-face the density is approximately 175 per micron 2. Irradiation of the lumbosacral spinal cord at 3 days of age results in a glial cell-deficient region within the spinal cord such that myelination in irradiated dorsal funiculi is delayed and subsequent myelination is mediated by both oligodendrocytes and Schwann cells. By 45 days of age, dorsal funiculi of irradiated spinal cords are well populated with fibres myelinated by oligodendrocytes and Schwann cells. However, fibres myelinated by oligodendrocytes display very thin myelin sheaths whereas Schwann cell-myelinated fibres exhibit myelin sheaths with normal thicknesses. Internodal membrane of fibres myelinated by Schwann cells and oligodendrocytes exhibit similar macromolecular structure, with approximately 2400 IMPs per micron 2 on P-faces and approximately 150 IMPs per micron 2 on E-faces. Occasional large (greater than 1.5 micron diameter) axons without glial-Schwann cell ensheathment are observed. These axons display a high density of P-face particles (approximately 2000 per micron 2) and a moderate density (approximately 350 per micron 2) of E-face IMPs on their fracture faces. These results demonstrate that CNS fibers exhibit similar axonal membrane ultrastructure irrespective of whether they are myelinated by Schwann cells or oligodendrocytes, or whether myelination is delayed. Moreover, when myelination does not occur, the axolemmal E-face IMP density, which may be related to the density of voltage-sensitive sodium channels, is not reduced.
Collapse