1
|
Shikina S, Tsai PH, Chiu YL, Chang CF. The stony coral Fimbriaphyllia (Euphyllia) ancora's reproductive strategy involves a sex change every year. Commun Biol 2024; 7:1093. [PMID: 39237739 PMCID: PMC11377712 DOI: 10.1038/s42003-024-06799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
A sex change phenomenon was reported in some free-living, non-sessile coral species of the Family Fungiidae. However, there are no reports describing sex change in sessile colonial species. Timing and cellular processes of sex change are also unclear in corals. Here, we report sex change of the colonial coral, Fimbriaphyllia ancora, and its cellular process. Of 26 colonies monitored at Nanwan Bay, southern Taiwan, about 70% changed their sex every year after annual spawning for least 3-4 consecutive years, i.e., colonies that were male two years ago became female last year, and male again this year. The remaining 30% were permanently male or female. Sex-change and non-sex-change colonies grew in close proximity or even side-by-side. No significant differences were found in colony size between sex-change and non-sex-change colonies. Histological analysis showed that, in female-to-male sex change, small oocytes were present up to 3 months in some gonads after spawning and disappeared by 5 months. This suggests that sex change occurred 4-5 months after spawning. In contrast, in male-to-female sex change, oocytes appeared weeks after sperm release and in most gonads by 3 months, suggesting that male-to-female sex change occurred 0-3 months after sperm release.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
2
|
Miklós M, Laczkó L, Sramkó G, Sebestyén F, Barta Z, Tökölyi J. Phenotypic plasticity rather than genotype drives reproductive choices in Hydra populations. Mol Ecol 2021; 30:1206-1222. [PMID: 33465828 DOI: 10.1111/mec.15810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.
Collapse
Affiliation(s)
- Máté Miklós
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary.,MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Flóra Sebestyén
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Barfield S, Aglyamova GV, Matz MV. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc Biol Sci 2016; 283:rspb.2015.2128. [PMID: 26763699 DOI: 10.1098/rspb.2015.2128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions.
Collapse
Affiliation(s)
- Sarah Barfield
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Galina V Aglyamova
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Siebert S, Juliano CE. Sex, polyps, and medusae: Determination and maintenance of sex in cnidarians. Mol Reprod Dev 2016; 84:105-119. [DOI: 10.1002/mrd.22690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Stefan Siebert
- Department of Molecular and Cellular Biology; University of California; Davis California
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology; University of California; Davis California
| |
Collapse
|
5
|
Kaliszewicz A, Lipińska A. Environmental condition related reproductive strategies and sex ratio in hydras. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00536.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Bosch TC, David CN. Male and female stem cells and sex reversal in Hydra polyps. Proc Natl Acad Sci U S A 2010; 83:9478-82. [PMID: 16593789 PMCID: PMC387163 DOI: 10.1073/pnas.83.24.9478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single interstitial stem cells of male polyps of Hydra magnipapillata give rise to clones that differentiate either male or female gametes. To test the sexual stability of these clones, stem cells were recloned. The results indicate that stem cells from female clones are stable in their sexual differentiation capacity; male stem cells, by comparison, switch sexual phenotype at the rate of 10(-2) per cell per generation. As a result, female polyps contain only female stem cells; male polyps contain a mixture of male and female stem cells. A model is presented in which the sexual phenotype of Hydra polyps is controlled by (i) the switching rate of male and female stem cells and (ii) the repression of female differentiation by male stem cells.
Collapse
Affiliation(s)
- T C Bosch
- Zoologisches Institut der Universität München, Luisenstrasse 14, D-8000 München 2, Federal Republic of Germany
| | | |
Collapse
|
7
|
Watanabe H, Hoang VT, Mättner R, Holstein TW. Immortality and the base of multicellular life: Lessons from cnidarian stem cells. Semin Cell Dev Biol 2009; 20:1114-25. [PMID: 19761866 DOI: 10.1016/j.semcdb.2009.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 02/01/2023]
Abstract
Cnidarians are phylogenetically basal members of the animal kingdom (>600 million years old). Together with plants they share some remarkable features that cannot be found in higher animals. Cnidarians and plants exhibit an almost unlimited regeneration capacity and immortality. Immortality can be ascribed to the asexual mode of reproduction that requires cells with an unlimited self-renewal capacity. We propose that the basic properties of animal stem cells are tightly linked to this archaic mode of reproduction. The cnidarian stem cells can give rise to a number of differentiated cell types including neuronal and germ cells. The genomes of Hydra and Nematostella, representatives of two major cnidarian classes indicate a surprising complexity of both genomes, which is in the range of vertebrates. Recent work indicates that highly conserved signalling pathways control Hydra stem cell differentiation. Furthermore, the availability of genomic resources and novel technologies provide approaches to analyse these cells in vivo. Studies of stem cells in cnidarians will therefore open important insights into the basic mechanisms of stem cell biology. Their critical phylogenetic position at the base of the metazoan branch in the tree of life makes them an important link in unravelling the common mechanisms of stem cell biology between animals and plants.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Heidelberg University, Institute of Zoology, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
8
|
Carr� D, Carr� C. Origin of germ cells, sex determination, and sex inversion in medusae of the genusClytia (Hydrozoa, Leptomedusae): The influence of temperature. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-010x(20000801)287:3<233::aid-jez5>3.0.co;2-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
GRASSI M, TARDENT R, TARDENT P. Quantitative data about gametogenesis and embryonic development inHydra vulgarisPall. (Cnidaria, Hydrozoa). INVERTEBR REPROD DEV 1995. [DOI: 10.1080/07924259.1995.9672452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
The growth of interstitial cell populations in Hydra magnipapillata was examined following transplantation of small numbers of interstitial cells into "epithelial animals" which lacked all cell types in the interstitial cell lineage. The distribution pattern of transplanted interstitial cells during the growth phase was examined by staining whole animals with toluidine blue and cell numbers were determined by maceration. The following results were obtained: (1) Transplanted interstitial cells formed a contiguous patch which spread distoproximally but not circumferentially. (2) The displacement of interstitial cells from parents to buds was a random process; buds incorporated interstitial cells only when they were formed in the vicinity of the patch. (3) Interstitial cells increased exponentially in number with a doubling time of 1.8 days for at least 10 days after transplantation, which is faster than the normal doubling time of 2.8 days. (4) The self-renewal probability at low interstitial cell levels was estimated to be 0.72, which was higher than the normal value of 0.64. This increase was attained by lowering the fraction of nematocyte differentiation. These results indicate that the homeostatic recovery of interstitial cell populations is attained by increasing the self-renewal probability rather than by preferential retention of interstitial cells in parent animals at the expense of buds (Heimfeld, 1985).
Collapse
Affiliation(s)
- T Fujisawa
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka, Japan
| |
Collapse
|
11
|
Role of the cellular environment in interstitial stem cell proliferation in Hydra. ACTA ACUST UNITED AC 1991; 200:269-276. [PMID: 28305796 DOI: 10.1007/bf00241296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1991] [Accepted: 07/25/1991] [Indexed: 10/26/2022]
Abstract
The role of the cellular environment on hydra stem cell proliferation and differentiation was investigated by introduction of interstitial cells into host tissue of defined cellular composition. In epithelial tissue lacking all non-epithelial cells the interstitial cell population did not grow but differentiated into nerve cells and nematocytes. In host tissue with progressively increased numbers of nerve cells growth of the interstitial cell population was positively correlated to the nerve cell density. In agreement with previous observations (Bode et al. 1976), growth of the interstitial cell population was also found to be negatively correlated to the level of interstitial cells present. The strong correlation between the growth of the interstitial cell population and the presence of interstitial cells and nerve cells implies that interstitial cell proliferation is controlled by a feedback signal from interstitial cells and their derivatives. Our results suggest that the cellular environment of interstitial cells provides cues which are instrumental in stem cell decision making.
Collapse
|
12
|
Littlefield CL, Finkemeier C, Bode HR. Spermatogenesis in Hydra oligactis. II. How temperature controls the reciprocity of sexual and asexual reproduction. Dev Biol 1991; 146:292-300. [PMID: 1864458 DOI: 10.1016/0012-1606(91)90231-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydra oligactis undergo two mutually exclusive modes of reproduction: at warm temperatures (18-22 degrees C) animals reproduce asexually by budding, while at cold temperatures (10-12 degrees C) gamete differentiation occurs. Using a monoclonal antibody which is specific for cells of the sperm lineage, it was discovered that under conditions where sperm differentiation does not occur (18-22 degrees C), cells continually enter the sperm pathway but progression down the pathway is prematurely halted, effectively blocking the production of sperm. To elucidate the mechanism by which completion of sperm differentiation is controlled, the cell cycle times of interstitial cells entering the sperm pathway at both the restrictive (18 degrees C) and permissive (10 degrees C) temperatures were examined. It was envisaged that at the restrictive temperature the cell cycle times of committed cells would lengthen as they proceeded down the pathway, leading to dilution and eventual loss of cells at later stages of sperm differentiation. This did not occur. Although cells of the sperm lineage were found overall to divide more slowly at 18 degrees C than at 10 degrees C, at both temperatures the cell cycle times shortened as cells proceeded further down the pathway, making a dilution mechanism untenable. The effect of high temperature on the survival of cells was then tested by subjecting animals to a heat shock. Within 12 hr of the increase in temperature, the total number of sperm lineage interstitial cells dropped 10-fold while the total numbers of epithelial and somatic interstitial cells remained virtually unchanged. A distinct consequence of this cell loss was the disappearance of cells furthest down the sperm pathway. It is proposed that as cells move down the sperm pathway, they become increasingly sensitive to high temperature which adversely affects their survival; the higher the temperature, the earlier in the pathway cells die. The lethal effect is abolished by lowering the temperature, allowing sperm differentiation to continue to completion. The possible adaptive advantages of temperature controlling gametogenesis are discussed.
Collapse
Affiliation(s)
- C L Littlefield
- Developmental Biology Center, University of California, Irvine 92717
| | | | | |
Collapse
|
13
|
Cell lineages in Hydra: isolation and characterization of an interstitial stem cell restricted to egg production in Hydra oligactis. Dev Biol 1991; 143:378-88. [PMID: 1991559 DOI: 10.1016/0012-1606(91)90088-k] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In an attempt to isolate unipotent stem cells (progenitors to the nerve cells, nematocytes, gland cells, and gametes) from Hydra oligactis females, animals were treated with a drug (hydroxyurea, HU) that preferentially lowers or eliminates the interstitial stem cells, leaving the epithelial tissue intact. In this epithelial environment, interstitial cells remaining after treatment will proliferate and differentiate, permitting a long-term analysis of their developmental capabilities. Following treatment of females with HU, animals were isolated that contained interstitial cells that gave rise to eggs only. Two clones of animals containing these cells were propagated for several years and the growth and differentiation behavior of the interstitial cells examined in their asexually produced offspring. During this time, the cells displayed an extensive proliferative capacity (classifying them as stem cells) and remained restricted to egg differentiation. It is proposed that both the sperm- and the egg-restricted stem cells arise from a multipotent stem cell, which also gives rise to the somatic cells (see above), and that, in hydra, sex is ultimately determined by interactions between cells of the two germ cell lineages.
Collapse
|