1
|
Leonard M, Zhang L, Bleaken BM, Menko AS. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Dev Dyn 2013; 242:469-84. [PMID: 23361870 DOI: 10.1002/dvdy.23935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Src family tyrosine kinases (SFKs) are often coincidently expressed but few studies have dissected their individual functions in the same cell during development. Using the classical embryonic lens as our model, we investigated SFK signaling in the regulation of both differentiation initiation and morphogenesis, and the distinct functions of c-Src and Fyn in these processes. RESULTS Blocking SFK activity with the highly specific inhibitor PP1 induced initiation of the lens differentiation program but blocked lens fiber cell elongation and organization into mini lens-like structures called lentoids. These dichotomous roles for SFK signaling were discovered to reflect distinct functions of c-Src and Fyn and their differentiation-state-specific recruitment to and action at N-cadherin junctions. c-Src was highly associated with the nascent N-cadherin junctions of undifferentiated lens epithelial cells. Its siRNA knockdown promoted N-cadherin junctional maturation, blocked proliferation, and induced lens cell differentiation. In contrast, Fyn was recruited to mature N-cadherin junctions of differentiating lens cells and siRNA knockdown suppressed differentiation-specific gene expression and blocked morphogenesis. CONCLUSIONS Through inhibition of N-cadherin junction maturation, c-Src promotes lens epithelial cell proliferation and the maintenance of the lens epithelial cell undifferentiated state, while Fyn, signaling downstream of mature N-cadherin junctions, promotes lens fiber cell morphogenesis.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
2
|
Primary cultures of embryonic chick lens cells as a model system to study lens gap junctions and fiber cell differentiation. J Membr Biol 2012; 245:357-68. [PMID: 22797938 DOI: 10.1007/s00232-012-9458-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/20/2012] [Indexed: 01/31/2023]
Abstract
A major limitation in lens gap junction research has been the lack of experimentally tractable ex vivo systems to study the formation and regulation of fiber-type gap junctions. Although immortalized lens-derived cell lines are amenable to both gene transfection and siRNA-mediated knockdown, to our knowledge none are capable of undergoing appreciable epithelial-to-fiber differentiation. Lens central epithelial explants have the converse limitation. A key advance in the field was the development of a primary embryonic chick lens cell culture system by Drs. Sue Menko and Ross Johnson. Unlike central epithelial explants, these cultures also include cells from the peripheral (preequatorial and equatorial) epithelium, which is the most physiologically relevant population for the study of fiber-type gap junction formation. We have modified the Menko/Johnson system and refer to our cultures as dissociated cell-derived monolayer cultures (DCDMLs). We culture DCDMLs without serum to mimic the avascular lens environment and on laminin, the major matrix component of the lens capsule. Here, I review the features of the DCDML system and how we have used it to study lens gap junctions and fiber cell differentiation. Our results demonstrate the power of DCDMLs to generate new findings germane to the mammalian lens and how these cultures can be exploited to conduct experiments that would be impossible, prohibitively expensive and/or difficult to interpret using transgenic animals in vivo.
Collapse
|
3
|
Boswell BA, Overbeek PA, Musil LS. Essential role of BMPs in FGF-induced secondary lens fiber differentiation. Dev Biol 2008; 324:202-12. [PMID: 18848538 PMCID: PMC2853743 DOI: 10.1016/j.ydbio.2008.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/05/2008] [Accepted: 09/03/2008] [Indexed: 02/07/2023]
Abstract
It is widely accepted that vitreous humor-derived FGFs are required for the differentiation of anterior lens epithelial cells into crystallin-rich fibers. We show that BMP2, 4, and 7 can induce the expression of markers of fiber differentiation in primary lens cell cultures to an extent equivalent to FGF or medium conditioned by intact vitreous bodies (VBCM). Abolishing BMP2/4/7 signaling with noggin inhibited VBCM from upregulating fiber marker expression. Remarkably, noggin and anti-BMP antibodies also prevented purified FGF (but not unrelated stimuli) from upregulating the same fiber-specific proteins. This effect is attributable to inhibition of BMPs produced by the lens cells themselves. Although BMP signaling is required for FGF to enhance fiber differentiation, the converse is not true. Expression of noggin in the lenses of transgenic mice resulted in a postnatal block of epithelial-to-secondary fiber differentiation, with extension of the epithelial monolayer to the posterior pole of the organ. These results reveal the central importance of BMP in secondary fiber formation and show that although FGF may be necessary for this process, it is not sufficient. Differentiation of fiber cells, and thus proper vision, is dependent on cross-talk between the FGF and BMP signaling pathways.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | | | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
4
|
Boswell BA, Le ACN, Musil LS. Upregulation and maintenance of gap junctional communication in lens cells. Exp Eye Res 2008; 88:919-27. [PMID: 19103198 DOI: 10.1016/j.exer.2008.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/08/2008] [Accepted: 11/26/2008] [Indexed: 01/20/2023]
Abstract
The cells of the lens are joined by an extensive network of gap junction intercellular channels consisting of connexins 43, 46, and 50. We have proposed, and experimentally supported, the hypothesis that fibroblast growth factor (FGF) signaling is required for upregulation of gap junction-mediated intercellular coupling (GJIC) at the lens equator. The ability of FGF to increase GJIC in cultured lens cells requires sustained activation of extracellular signal-regulated kinase (ERK). In other cell types, activation of ERK has been shown to block GJIC mediated by connexin43 (Cx43). Why ERK signaling does not block lens cell coupling is not known. Another unresolved issue in lens gap junction regulation is how connexins, synthesized before the loss of biosynthetic organelles in mature lens fiber cells, avoid degradation during formation of the organelle-free zone. We have addressed these questions using serum-free cultures (termed DCDMLs) of primary embryonic chick lens epithelial cells. We show that FGF stimulates ERK in DCDMLs via the canonical Ras/Raf1 pathway, and that the reason that neither basal nor growth factor-stimulated GJIC is blocked by activation of ERK is because it is not mediated by Cx43. In fibroblastic cells, the normally rapid rate of degradation of Cx43 after its transport to the plasma membrane is reduced by treatments that either directly (ALLN; epoxomicin) or indirectly (generation of oxidatively un/mis-folded proteins by arsenic compounds) prevent the ubiquitin/proteasome system (UPS) from acting on its normal substrates. We show here that Cx45.6 and Cx56, the chick orthologs of mammalian Cx50 and Cx46, behave similarly in DCDMLs. When organelles lyse during the maturation of fiber cells, they release into the cytosol a large amount of new proteins that have the potential to saturate the capacity, and/or compromise the function, of the UPS. This would serve to spare gap junctions from degradation during formation of the organelle-free zone, thereby preserving GJIC between mature fiber cells despite the lack of de novo connexin synthesis.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology L224, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
5
|
Boswell BA, Lein PJ, Musil LS. Cross-talk between fibroblast growth factor and bone morphogenetic proteins regulates gap junction-mediated intercellular communication in lens cells. Mol Biol Cell 2008; 19:2631-41. [PMID: 18400943 DOI: 10.1091/mbc.e08-02-0124] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homeostasis in the lens is dependent on an extensive network of cell-to-cell gap junctional channels. Gap junction-mediated intercellular coupling (GJIC) is higher in the equatorial region of the lens than at either pole, an asymmetry believed essential for lens transparency. Primary cultures of embryonic chick lens epithelial cells up-regulate GJIC in response to purified fibroblast growth factor (FGF)1/2 or to medium conditioned by vitreous bodies, the major reservoir of factors (including FGF) for the lens equator. We show that purified bone morphogenetic protein (BMP)2, -4, and -7 also up-regulate GJIC in these cultures. BMP2, -4, or both are present in vitreous body conditioned medium, and BMP4 and -7 are endogenously expressed by lens cells. Remarkably, lens-derived BMP signaling is required for up-regulation of GJIC by purified FGF, and sufficient for up-regulation by vitreous humor. This is the first demonstration of an obligatory interaction between FGF and BMPs in postplacode lens cells, and of a role for FGF/BMP cross-talk in regulating GJIC in any cell type. Our results support a model in which the angular gradient in GJIC in the lens, and thus proper lens function, is dependent on signaling between the FGF and BMP pathways.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
6
|
Weber GF, Menko AS. Actin filament organization regulates the induction of lens cell differentiation and survival. Dev Biol 2006; 295:714-29. [PMID: 16678812 DOI: 10.1016/j.ydbio.2006.03.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 01/08/2023]
Abstract
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
7
|
Le AC, Musil LS. A novel role for FGF and extracellular signal-regulated kinase in gap junction-mediated intercellular communication in the lens. J Cell Biol 2001; 154:197-216. [PMID: 11449001 PMCID: PMC2196873 DOI: 10.1083/jcb.200101057] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junction-mediated intercellular coupling is higher in the equatorial region of the lens than at either pole, a property believed to be essential for lens transparency. We show that fibroblast growth factor (FGF) upregulates gap junctional intercellular dye transfer in primary cultures of embryonic chick lens cells without detectably increasing either gap junction protein (connexin) synthesis or assembly. Insulin and insulin-like growth factor 1, as potent as FGF in inducing lens cell differentiation, had no effect on gap junctions. FGF induced sustained activation of extracellular signal-regulated kinase (ERK) in lens cells, an event necessary and sufficient to increase gap junctional coupling. We also identify vitreous humor as an in vivo source of an FGF-like intercellular communication-promoting activity and show that FGF-induced ERK activation in the intact lens is higher in the equatorial region than in polar and core fibers. These findings support a model in which regional differences in FGF signaling through the ERK pathway lead to the asymmetry in gap junctional coupling required for proper lens function. Our results also identify upregulation of intercellular communication as a new function for sustained ERK activation and change the current paradigm that ERKs only negatively regulate gap junction channel activity.
Collapse
Affiliation(s)
- A C Le
- Molecular Medicine Division, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | |
Collapse
|
8
|
Lim JM, Kim JA, Lee JH, Joo CK. Downregulated Expression of Integrin α6 by Transforming Growth Factor-β1 on Lens Epithelial Cells in Vitro. Biochem Biophys Res Commun 2001; 284:33-41. [PMID: 11374867 DOI: 10.1006/bbrc.2001.4942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrins represent the main cell surface receptors that mediate cell-matrix and cell-cell interactions. They play critical roles in adhesion, migration, morphogenesis, and the differentiation of several cell types. Previous studies have demonstrated that members of the fibroblast growth factor (FGF)-2, transforming growth factor (TGF)-beta(1), and insulin growth factor (IGF)-1 play important roles in lens biology. In particularly, TGF-beta(1) appears to play a key role in extracellular matrix production, cell proliferation, and cell differentiation of lens epithelial cells. In this study we investigated the effects of FGF-2, TGF-beta(1), and IGF-1 on the modulation of integrin receptors using lens epithelial cell lines (HLE B-3 and alphaTN-4) and lens explants. We found that the expression of integrin alpha6 is downregulated by TGF-beta(1), but is not responsive to FGF-2 or IGF-1. The promoter activity of the integrin alpha6 gene decreased upon TGF-beta(1) treatment in a transient transfection assay, and flow cytometric analysis demonstrated the reduced expression of integrin alpha6 by TGF-beta(1), whereas significant changes were not observed in the level of integrin alpha6 after the addition of FGF-2. These findings suggest that the reduced expression of integrin alpha6 caused by TGF-beta(1) might play a role in the activation of the cell cycle genes required during the fiber differentiation of the lens.
Collapse
Affiliation(s)
- J M Lim
- Department of Ophthalmology and Visual Science, College of Medicine, Catholic University of Korea, and Catholic Research Institutes of Medical Sciences, Seoul, Korea
| | | | | | | |
Collapse
|
9
|
Le AC, Musil LS. Normal differentiation of cultured lens cells after inhibition of gap junction-mediated intercellular communication. Dev Biol 1998; 204:80-96. [PMID: 9851844 DOI: 10.1006/dbio.1998.9030] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cells of the vertebrate lens are linked to each other by gap junctions, clusters of intercellular channels that mediate the direct transfer of low-molecular-weight substances between the cytosols of adjoining cells. Although gap junctions are detectable in the unspecialized epithelial cells that comprise the anterior face of the organ, both their number and size are greatly increased in the secondary fiber cells that differentiate from them at the lens equator. In other organs, gap junctions have been shown to play an important role in tissue development and differentiation. It has been proposed, although not experimentally tested, that this may be true in the lens as well. To investigate the function of gap junctions in the development of the lens, we have examined the effect of the gap junction blocker 18beta-glycyrrhetinic acid (betaGA) on the differentiation of primary cultures (both dissociated cell-derived monolayers and central epithelium explants) of embryonic chick lens epithelial cells. We found that betaGA greatly reduced gap junction-mediated intercellular transfer of Lucifer yellow and biocytin throughout the 8-day culture period. betaGA did not, however, affect the differentiation of these cells into MP28-expressing secondary fibers. Furthermore, inhibition of gap junctions had no apparent effect on either of the two other types of intercellular (adherens and tight) junctions present in the lens. We conclude that the high level of gap junctional intercellular communication characteristic of the lens equator in vivo is not required for secondary fiber formation as assayed in culture. Up-regulation of gap junctions is therefore likely to be a consequence rather than a cause of lens fiber differentiation and may primarily play a role in lens physiology.
Collapse
Affiliation(s)
- A C Le
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon, 97201, USA
| | | |
Collapse
|
10
|
Berthoud VM, Beyer EC, Kurata WE, Lau AF, Lampe PD. The gap-junction protein connexin 56 is phosphorylated in the intracellular loop and the carboxy-terminal region. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:89-97. [PMID: 9063450 DOI: 10.1111/j.1432-1033.1997.00089.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lens gap-junction protein, connexin 56, is modified by phosphorylation. Two-dimensional mapping of tryptic phosphopeptides of 32P-labeled connexin 56 from primary chicken-lens cultures showed that treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) induced an increase in phosphorylation of connexin 56 at specific constitutively phosphorylated sites. Treatment with 8-Br-cAMP or forskolin did not induce substantial changes in connexin 56 phosphorylation. Two phosphorylation sites within connexin 56, S493 and S118, were identified after HPLC purification and peptide sequencing of tryptic phosphopeptides from bacterially expressed connexin 56 fusion proteins phosphorylated by protein kinase C or protein kinase A in vitro. Comparisons of the two-dimensional maps of tryptic phosphopeptides from in vitro phosphorylated connexin 56 fusion proteins and in vivo phosphorylated connexin 56 showed that S493 and S118 were constitutively phosphorylated in lentoid-containing cultures, and that treatment with TPA induced an increase in phosphorylation of the peptides containing S118. It is suggested that phosphorylation of connexin 56 at S118 is involved in the TPA-induced decrease in intercellular communication and acceleration of connexin 56 degradation.
Collapse
Affiliation(s)
- V M Berthoud
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
In this paper, the more recent literature pertaining to differentiation in the developing vertebrate lens is reviewed in relation to previous work. The literature reviewed reveals that the developing lens has been, and will continue to be, a useful model system for the examination of many fundamental processes occurring during embryonic development. Areas of lens development reviewed here include: the induction and early embryology of the lens; lens cell culture techniques; the role of growth factors and cytokines; the involvement of gap junctions in lens cell-cell communication; the role of cell adhesion molecules, integrins, and the extracellular matrix; the role of the cytoskeleton; the processes of programmed cell death (apoptosis) and lens fibre cell denucleation; the involvement of Pax and Homeobox genes; and crystallin gene regulation. Finally, some speculation is provided as to possible directions for further research in lens development.
Collapse
Affiliation(s)
- M A Wride
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Rinaudo JA, Vacchiano E, Zelenka PS. Effects of c-Jun and a negative dominant mutation of c-Jun on differentiation and gene expression in lens epithelial cells. J Cell Biochem 1995; 58:237-47. [PMID: 7673330 DOI: 10.1002/jcb.240580212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (Jun delta 7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of "lentoid bodies," structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of beta A3/A1-crystallin mRNA, without affecting alpha A-crystallin mRNA. In contrast, the mutated protein, Jun delta 7, had no effect on proliferation or differentiation but markedly increased the level of alpha A-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of alpha A- and beta A3/A1-crystallin genes in proliferating lens cells.
Collapse
Affiliation(s)
- J A Rinaudo
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
13
|
Jiang JX, White TW, Goodenough DA, Paul DL. Molecular cloning and functional characterization of chick lens fiber connexin 45.6. Mol Biol Cell 1994; 5:363-73. [PMID: 8049527 PMCID: PMC301043 DOI: 10.1091/mbc.5.3.363] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The avian lens is an ideal system to study gap junctional intercellular communication in development and homeostasis. The lens is experimentally more accessible in the developing chick embryo than in other organisms, and chick lens cells differentiate well in primary cultures. However, only two members of the connexin gene family have been identified in the avian lens, whereas three are known in the mammalian system. We report here the molecular cloning and characterization of the third lens connexin, chick connexin45.6 (ChCx45.6), a protein with a predicted molecular mass of 45.6 kDa. ChCx45.6 was encoded by a single copy gene and was expressed specifically in the lens. There were two mRNA species of 6.4 kilobase (kb) and 9.4 kb in length. ChCx45.6 was a functional connexin protein, because expression in Xenopus oocyte pairs resulted in the development of high levels of conductance with a characteristic voltage sensitivity. Antisera were raised against ChCx45.6 and chick connexin56 (ChCx56), another avian lens-specific connexin, permitting the examination of the distribution of both proteins. Immunofluorescence localization showed that both ChCx45.6 and ChCx56 were abundant in lens fibers. Treatment of lens membranes with alkaline phosphatase resulted in electrophoretic mobility shifts, demonstrating that both ChCx45.6 and ChCx56 were phosphoproteins in vivo.
Collapse
Affiliation(s)
- J X Jiang
- Department of Cell Biology, Neurobiology Harvard Medical School, Boston 02115
| | | | | | | |
Collapse
|
14
|
Chick connexin-56, a novel lens gap junction protein. Molecular cloning and functional expression. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54209-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Miller AG, Zampighi GA, Hall JE. Single-membrane and cell-to-cell permeability properties of dissociated embryonic chick lens cells. J Membr Biol 1992; 128:91-102. [PMID: 1501244 DOI: 10.1007/bf00231882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ion channels are believed to play an important role in the maintenance of lens transparency. In order to ascribe junctional and nonjunctional permeability properties to specific lens cell types, embryonic chick lenses were enzymatically dissociated into cell clusters, cell pairs and single cells, and both cell-to-cell and single-membrane permeability properties were characterized with the patch-clamp technique. Double patch-clamp experiments and single patch-clamp experiments with Lucifer yellow in the pipette demonstrated that the cells in the dissociated preparation were well coupled, the average conductance between pairs being 42 +/- 27 nS. Double patch-clamp experiments also revealed single cell-to-cell channel events with a predominant unitary conductance of 286 +/- 38 pS. Whole-cell measurements of surface membrane conductance indicate heterogeneity within the population of dissociated embryonic chick lens cells: 63% of the cells have a voltage-independent leak current, 14% of the cells have a potassium-selective inward-rectifier current, and 23% of the cells have a current which turns off with positive voltage on a time scale on the order of seconds. The time constant for this turnoff is voltage dependent.
Collapse
Affiliation(s)
- A G Miller
- Department of Physiology and Biophysics, University of California, Irvine 92715
| | | | | |
Collapse
|
16
|
Messiaen L, Qian S, De Bruyne G, Boghaert E, Moens T, Rabaey M, Van Roy F, Mareel M. Spontaneous acquisition of tumorigenicity and invasiveness by mouse lens explant cells during culture in vitro. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:369-80. [PMID: 2071540 DOI: 10.1007/bf02630956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The lens of the eye is one of the rare organs in which tumors do not occur spontaneously. It therefore appeared to us that lens cells would not present the background of spontaneous transformation toward malignancy found with many other cell cultures. We have cultured C3H/HeA mouse lens explant (MLE) cells for 70 wk and analyzed changes in malignancy-related phenotypes in function of the number of passages. In vitro, we studied morphology, colony forming efficiency on tissue culture plastic substrate (CFEtc) and in soft agar, population doubling time, saturation density, and invasiveness into precultured chick heart fragments. In vivo, tumorigenicity, invasion, and metastasis were analyzed after injection of cell suspensions subcutaneously and intraperitoneally, after implantation of cells aggregated to collagen sponges under the renal capsule and after implantation of cell aggregates subcutaneously into the tail and into the pinna. The CFEtc, population doubling time, and saturation density increased as the number of passages of culture in vitro increased, but colony formation in soft agar was never observed. MLE cells till passage 16 were not invasive in vitro, but hereafter consistently were found to be invasive. After about 17 passages, corresponding to 25 wk of culture, MLE cells acquired the capacity to form tumors in syngeneic mice. These tumors were invasive but metastases were not observed. We concluded that MLE cells acquired in an apparently spontaneous way a number of malignancy-related phenotypes, without, however, reaching the stage of metastasis.
Collapse
Affiliation(s)
- L Messiaen
- Department of Radiotherapy and Nuclear Medicine, University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Musil LS, Beyer EC, Goodenough DA. Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol 1990; 116:163-75. [PMID: 2166164 DOI: 10.1007/bf01868674] [Citation(s) in RCA: 249] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with 32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.
Collapse
Affiliation(s)
- L S Musil
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
18
|
Kodama R, Agata K, Mochii M, Eguchi G. Partial amino acid sequence of the major intrinsic protein (MIP) of the chicken lens deduced from the nucleotide sequence of a cDNA clone. Exp Eye Res 1990; 50:737-41. [PMID: 2373168 DOI: 10.1016/0014-4835(90)90123-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cDNA clone of the major intrinsic protein (MIP) of the chicken lens was isolated. This clone covers the C-terminal half of the coding region and 3'-untranslated region including a polyadenylation signal. Comparison with the bovine MIP cDNA sequence revealed that: (1) the amphilphilic transmembrane helix in bovine MIP is highly hydrophobic in chicken MIP, and is thus unlikely to offer a hydrophilic lining of the transmembrane pore, and (2) the possible calmodulin binding site is conserved especially at amino acid residues which are postulated to be important in its binding with calmodulin. Northern blotting revealed the presence of transcripts of different lengths, two of which correspond closely to the transcripts of bovine MIP.
Collapse
Affiliation(s)
- R Kodama
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
19
|
Patek CE, Clayton RM. Age-related changes in the response of chick lens cells during long-term culture to insulin, cyclic AMP, retinoic acid and a bovine retinal extract. Exp Eye Res 1990; 50:345-54. [PMID: 2159887 DOI: 10.1016/0014-4835(90)90135-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reported that 1-day-old post-hatch chick lens epithelial cells lose the capacity for lentoid body formation and delta-crystallin expression during long-term serial subculture, although they continue to synthesize, but not to accumulate, alpha- and beta-crystallins, even in cells with a transformed phenotype. Here we present evidence that dedifferentiation may reflect an age-related change in the capacity for response to regulatory signals. We have tested the capacity of these cells in serial subcultures to respond to agencies which affect lens cell growth and differentiation in primary culture: retinoic acid (RA), insulin, cAMP and bovine retinal extract (BRE). Secondary cultures responded only to RA and BRE, by an increase in lentoid formation and by alpha- and beta-accumulation, while RA also restored delta-crystallin expression. Later cultures showed no such responses. The results suggest that the process of lens cell dedifferentiation may, at first, be reversible but later becomes irreversible, despite the continuing persistence of low levels of crystallin expression.
Collapse
Affiliation(s)
- C E Patek
- Department of Genetics, University of Edinburgh, U.K
| | | |
Collapse
|
20
|
Watanabe M, Kobayashi H, Rutishauser U, Katar M, Alcala J, Maisel H. NCAM in the differentiation of embryonic lens tissue. Dev Biol 1989; 135:414-23. [PMID: 2776975 DOI: 10.1016/0012-1606(89)90190-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of the neural cell adhesion molecule (NCAM)2 in ocular lens differentiation was investigated in chicken embryos. Changes in expression of NCAM were documented by immunohistology of frozen sections. This analysis revealed that NCAM diminished during lens fiber differentiation, in contrast to the gap junction-associated protein MP26 which became more abundant. The form of NCAM expressed was determined by Western blot analysis of proteins extracted from the different regions of the Embryonic Day 6 lenses. All regions expressed NCAM with an apparent molecular weight of 140 kDa and relatively low levels of polysialylation. The function of NCAM in lens differentiation was investigated using antibodies that inhibit NCAM-mediated adhesion. Two parameters that change during maturation of the lens epithelial cells were monitored: the thickness of the tissue, indicating the length of lens cells, and the particle arrangement of gap junctions, reflecting the state of junctional differentiation. When epithelial cell explants of Embryonic Day 6 lenses were cultured for 5 days, the cells elongated and displayed an increase in the loose, random intramembranous particle arrangements characteristic of maturing lens fiber gap junctions. When the explants were cultured in the presence of anti-NCAM Fabs, the epithelia were thinner than in matched controls and had particle arrangements characteristic of a less mature state. The expression of NCAM during lens differentiation and the effects of attenuating NCAM function suggest that adhesion mediated by NCAM is an essential event in lens cell differentiation.
Collapse
Affiliation(s)
- M Watanabe
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | | | | | | | | | | |
Collapse
|
21
|
Inhibition of chicken embryo lens differentiation and lens junction formation in culture by pp60v-src. Mol Cell Biol 1988. [PMID: 2837640 DOI: 10.1128/mcb.8.4.1414] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.
Collapse
|
22
|
Menko AS, Boettiger D. Inhibition of chicken embryo lens differentiation and lens junction formation in culture by pp60v-src. Mol Cell Biol 1988; 8:1414-20. [PMID: 2837640 PMCID: PMC363298 DOI: 10.1128/mcb.8.4.1414-1420.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.
Collapse
Affiliation(s)
- A S Menko
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|