1
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
2
|
A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice. PLoS Genet 2017; 13:e1006580. [PMID: 28114310 PMCID: PMC5293279 DOI: 10.1371/journal.pgen.1006580] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/06/2017] [Accepted: 01/12/2017] [Indexed: 12/03/2022] Open
Abstract
Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl) exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ) prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile. Monospermic fertilization is essential for the onset of development. Egg cortical granules exocytose their contents after fertilization to prevent polyspermy by modifying the extracellular zona pellucida (ZP1, ZP2, ZP3). Little is known about the biology of these subcellular organelles which are unique to oocytes. Ovastacin, a zinc metalloendoprotease that cleaves ZP2 to prevent sperm binding, is a pioneer marker of mammalian cortical granules. ZP2 remains uncleaved in transgenic mice lacking ovastacin and sperm bind to the zona matrix independent of fertilization and cortical granule exocytosis. After documenting the rescue of the null phenotype with transgenic mice expressing fluorescently-tagged ovastacin, we defined a unique, well conserved, cortical granule localization motif using cRNA deletion mutants microinjected into mouse oocytes. The importance of the motif for localization to cortical granules was confirmed in vivo by deleting DNA encoding 7 amino acids of the endogenous locus with CRISPR/Cas9. Unexpectedly, mutant female mice were sub-fertile due to partial cleavage of ZP2 in the zona pellucida which prevented sperm from binding to ovulated eggs in vitro and in vivo. These observations offer unique insight into the molecular basis for translocation of proteins to cortical granules which is needed for successful, monospermic fertilization.
Collapse
|
3
|
Liu M, Yang HT. WNT4-like protein is a cortical granule component in mouse oocytes and functions in regulating preimplantation embryogenesis. Syst Biol Reprod Med 2015; 62:49-56. [PMID: 26700598 DOI: 10.3109/19396368.2015.1112445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mammalian cortical granules (CG) are membrane-bound organelles located in the cortex of the unfertilized oocytes. Upon fertilization, CG undergo exocytosis to function in blocking polyspermy. While cortical granules are important in fertilization, their exact biochemical composition and reproductive function have not been fully defined. In the present study, a 66 kDa wingless-type MMTV integration site family, member 4 (WNT4)-like protein, with mouse CG origin was identified. Oocytes that were double labeled with lectin Lens culinaris agglutinin (LCA) and WNT4 antibody showed colocalization of the WNT4 molecules and cortical granules. The disappearance of WNT4 molecules in the artificially activated oocytes that were devoid of cortical granules confirmed their granule origin. Following fertilization, WNT4 remained associated with zygotes and blastomeres of 2-cell and 8-cell embryos; however the amount of protein present was reduced more than 2-fold as embryos developed. Prior to implantation, WNT4 appeared to be detectable only in the trophoblast cells. Our functional study revealed that WNT4 molecules were involved in regulating zygotic cleavage and early embryogenesis. To our knowledge, this is the first study demonstrating mammalian cortical granules contain signaling molecules that are involved in the regulation of the first phase of embryonic development.
Collapse
Affiliation(s)
- Min Liu
- a Department of Life Science and.,b Graduate Institute of Biotechnology, Chinese Culture University , Taipei , Republic of China
| | - Huei-Ting Yang
- b Graduate Institute of Biotechnology, Chinese Culture University , Taipei , Republic of China
| |
Collapse
|
4
|
Zhou HX, Ma YZ, Liu YL, Chen Y, Zhou CJ, Wu SN, Shen JP, Liang CG. Assessment of mouse germinal vesicle stage oocyte quality by evaluating the cumulus layer, zona pellucida, and perivitelline space. PLoS One 2014; 9:e105812. [PMID: 25144310 PMCID: PMC4140848 DOI: 10.1371/journal.pone.0105812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/23/2014] [Indexed: 12/14/2022] Open
Abstract
To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits invitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Ying-Lei Liu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Ying Chen
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Sha-Na Wu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jiang-Peng Shen
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
- * E-mail:
| |
Collapse
|
5
|
Pires ES, Hlavin C, Macnamara E, Ishola-Gbenla K, Doerwaldt C, Chamberlain C, Klotz K, Herr AK, Khole A, Chertihin O, Curnow E, Feldman SH, Mandal A, Shetty J, Flickinger C, Herr JC. SAS1B protein [ovastacin] shows temporal and spatial restriction to oocytes in several eutherian orders and initiates translation at the primary to secondary follicle transition. Dev Dyn 2013; 242:1405-26. [PMID: 24038607 DOI: 10.1002/dvdy.24040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sperm Acrosomal SLLP1 Binding (SAS1B) protein (ovastacin) is an oolemmal binding partner for the intra-acrosomal sperm protein SLLP1. RESULTS Immunohistochemical localization revealed that SAS1B translation is restricted among adult tissues to the ovary and oocytes, SAS1B appearing first in follicles at the primary-secondary transition. Quiescent oocytes within primordial follicles and primary follicles did not stain for SAS1B. Examination of neonatal rat ovaries revealed SAS1B expression first as faint signals in postnatal day 3 oocytes, with SAS1B protein staining intensifying with oocyte growth. Irrespective of animal age or estrus stage, SAS1B was seen only in oocytes of follicles that initiated a second granulosa cell layer. The precise temporal and spatial onset of SAS1B expression was conserved in adult ovaries in seven eutherian species, including nonhuman primates. Immunoelectron micrographs localized SAS1B within cortical granules in MII oocytes. A population of SAS1B localized on the oolemma predominantly in the microvillar region anti-podal to the nucleus in ovulated MII rat oocytes and on the oolemma in macaque GV oocytes. CONCLUSIONS The restricted expression of SAS1B protein in growing oocytes, absence in the ovarian reserve, and localization on the oolemma suggest this zinc metalloprotease deserves consideration as a candidate target for reversible female contraceptive strategies.
Collapse
Affiliation(s)
- Eusebio S Pires
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peng Q, Yang H, Xue S, Shi L, Yu Q, Kuang Y. Secretome profile of mouse oocytes after activation using mass spectrum. J Assist Reprod Genet 2012; 29:765-71. [PMID: 22573034 DOI: 10.1007/s10815-012-9789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/25/2012] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mammalian oocytes undergo a cortical reaction after fertilization, releasing cortical granules and other proteins into the perivitelline space and inhibiting polyspermy. Few studies have evaluated the biological functions and properties of these proteins. STUDY DESIGN We investigated mouse oocytes in which the zona pellucida (ZP) was present (ZP-intact group) or absent (ZP-free group). RESULTS After being activated by Srcl2, secreted proteins are collected from mouse oocytes. Mass spectrometry analysis was performed that identified proteins such as Ldhb, PADi6, Uchl1, Pebp1, Alb, Hsp90aa1, Prss1, trypsinogen 7, trypsin 4, trypsin 10, Sod1, Zp1, Zp2, Zp3, Akap8, Npm2, Pkm2 and Ppia in the ZP-free group. Proteins such as Ldhb, Uchl1, Prss1, trypsin 10, trypsinogen 7, and Ast1 were identified in the ZP-intact groups. The expression of some proteins, including Ldhb, Alb and Sod1, were initially detected following oocyte activation. The finding of four trypsin subtypes, such as Prss1, further support previous observations. Studies investigating the physiological functions and properties of these proteins are ongoing. CONCLUSIONS Research on these cortical proteins provides a theoretical basis for understanding polyspermy inhibition at the level of ZP and gives technological support for fertilization detection, assessment of oocyte quality and embryonic culture.
Collapse
Affiliation(s)
- Qiuping Peng
- Department of Assisted Reproduction, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.
Collapse
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Private Chinese Culture University, Taipei, Republic of China.
| |
Collapse
|
8
|
Liu M, Oh A, Calarco P, Yamada M, Coonrod SA, Talbot P. Peptidylarginine deiminase (PAD) is a mouse cortical granule protein that plays a role in preimplantation embryonic development. Reprod Biol Endocrinol 2005; 3:42. [PMID: 16137333 PMCID: PMC1215517 DOI: 10.1186/1477-7827-3-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/01/2005] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While mammalian cortical granules are important in fertilization, their biochemical composition and functions are not fully understood. We previously showed that the ABL2 antibody, made against zona free mouse blastocysts, binds to a 75-kDa cortical granule protein (p75) present in a subpopulation of mouse cortical granules. The purpose of this study was to identify and characterize p75, examine its distribution in unfertilized oocytes and preimplantation embryos, and investigate its biological role in fertilization. RESULTS To identify p75, the protein was immunoprecipitated from ovarian lysates with the ABL2 antibody and analyzed by tandem mass spectrometry (MS/MS). A partial amino acid sequence (VLIGGSFY) was obtained, searched against the NCBI nonredundant database using two independent programs, and matched to mouse peptidylarginine deiminase (PAD). When PAD antibody was used to probe western blots of p75, the antibody detected a single protein band with a molecular weight of 75 kDa, confirming our mass spectrometric identification of p75. Immunohistochemistry demonstrated that PAD was present in the cortical granules of unfertilized oocytes and was released from activated and in vivo fertilized oocytes. After its release, PAD was observed in the perivitelline space, and some PAD remained associated with the oolemma and blastomeres' plasma membranes as a peripheral membrane protein until the blastocyst stage of development. In vitro treatment of 2-cell embryos with the ABL2 antibody or a PAD specific antibody retarded preimplantation development, suggesting that cortical granule PAD plays a role after its release in preimplantation cleavage and early embryonic development. CONCLUSION Our data showed that PAD is present in the cortical granules of mouse oocytes, is released extracellularly during the cortical reaction, and remains associated with the blastomeres' surfaces as a peripheral membrane protein until the blastocyst stage of development. Our in vitro study supports the idea that extracellular PAD functions in preimplantation development.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Andrea Oh
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Patricia Calarco
- Department of Anatomy and Medicine, School of Medicine, University of California, San Francisco, California 94143, USA
| | - Michiyuki Yamada
- Graduate School of Integrated Science, Yokohama City University, Yokohama, 236-0027 Japan
| | - Scott A Coonrod
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| |
Collapse
|
9
|
Abstract
Fertilization is the union of a single sperm and an egg, an event that results in a diploid embryo. Animals use many mechanisms to achieve this ratio; the most prevalent involves physically blocking the fusion of subsequent sperm. Selective pressures to maintain monospermy have resulted in an elaboration of diverse egg and sperm structures. The processes employed for monospermy are as diverse as the animals that result from this process. Yet, the fundamental molecular requirements for successful monospermic fertilization are similar, implying that animals may have a common ancestral block to polyspermy. Here, we explore this hypothesis, reviewing biochemical, molecular, and genetic discoveries that lend support to a common ancestral mechanism. We also consider the evolution of alternative or radical techniques, including physiological polyspermy, with respect to our ability to describe a parsimonious guide to fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
10
|
Liu M, Sims D, Calarco P, Talbot P. Biochemical heterogeneity, migration, and pre-fertilization release of mouse oocyte cortical granules. Reprod Biol Endocrinol 2003; 1:77. [PMID: 14613547 PMCID: PMC305340 DOI: 10.1186/1477-7827-1-77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 11/07/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oocyte cortical granules are important in the fertilization of numerous species including mammals. Relatively little is known about the composition, migration, and pre-fertilization release of mammalian oocyte cortical granules. RESULTS Results obtained with confocal scanning laser microscopy indicated that mouse oocytes have at least two populations of cortical granules, one that bound both the lectin LCA and the antibody ABL2 and one that bound only LCA. Both types of granules were synthesized at the same time during oocyte maturation suggesting that the ABL2 antigen is targeted to specific granules by a sorting sequence. The distribution of both populations of cortical granules was then studied during the germinal vesicle to metaphase II transition. As the oocytes entered metaphase I, the first cortical granule free domain, which was devoid of both populations of cortical granules, formed over the spindle. During first polar body extrusion, a subpopulation of LCA-binding granules became concentrated in the cleavage furrow and underwent exocytosis prior to fertilization. Granules that bound ABL2 were not exocytosed at this time. Much of the LCA-binding exudate from the release at the cleavage furrow was retained in the perivitelline space near the region of exocytosis and was deduced to contain at least three polypeptides with approximate molecular weights of 90, 62, and 56 kDa. A second cortical granule free domain developed following pre-fertilization exocytosis and subsequently continued to increase in area as both, LCA and LCA/ ABL2-binding granules near the spindle became redistributed toward the equator of the oocyte. The pre-fertilization release of cortical granules did not affect binding of sperm to the overlying zona pellucida. CONCLUSIONS Our data show that mouse oocytes contain at least two populations of cortical granules and that a subset of LCA-binding cortical granules is released at a specific time (during extrusion of the first polar body) and place (around the cleavage furrow) prior to fertilization. The observations indicate that the functions of the cortical granules are more complex than previously realized and include events occurring prior to gamete membrane fusion.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| | - DeAndrea Sims
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| | - Patricia Calarco
- Department of Anatomy and Medicine, School of Medicine, University of California, San Francisco, California 94143, USA
| | - Prue Talbot
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| |
Collapse
|
11
|
Sun QY. Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech 2003; 61:342-8. [PMID: 12811739 DOI: 10.1002/jemt.10347] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Following fusion of sperm and egg, the contents of cortical granules (CG), a kind of special organelle in the egg, release into the perivitelline space (cortical reaction), causing the zona pellucida to become refractory to sperm binding and penetration (zona reaction). Accumulating evidence demonstrates that mammalian cortical reaction is probably mediated by activation of the inositol phosphate (PIP(2)) cascade. The sperm-egg fusion, mediated by GTP-binding protein (G-protein), may elicit the generation of two second messengers, inositol 1,4,5 triphosphate (IP(3)) and diacylglycerol (DAG). The former induces Ca(2+) release from intracellular stores and the latter activates protein kinase C (PKC), leading to CG exocytosis. Calmodulin-dependent kinase II (CaMKII) may act as a switch in the transduction of the calcium signal. The CG exudates cause zona sperm receptor modification and zona hardening, and thus block polyspermic penetration. Oolemma modification after sperm-egg fusion and formation of CG envelope following cortical reaction also contribute to polyspermy block.
Collapse
Affiliation(s)
- Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P.R. China.
| |
Collapse
|
12
|
Abstract
Polyspermy is one of the most commonly observed abnormal types of fertilization in mammalian oocytes. In vitro fertilization (IVF) provides approaches to study the mechanisms by which oocytes block polyspermic fertilization. Accumulated data indicate that oocyte, sperm and insemination conditions are all related to the occurrence of polyspermic fertilization. A high proportion of immature and aged oocytes showed polyspermy as compared with mature oocytes. Preincubation of oocytes and/or sperm with oviductal epithelial cells or collected oviductal fluid before IVF reduces polyspermic penetration. Recently, it was found that an abnormal zona pellucida is one of main causes of polyspermy in human eggs. A high proportion of polyspermy has resulted from the use of a high concentration of capacitated spermatozoa at the site of fertilization, irrespective of in the in vivo or in vitro environment. Oviductal secretions or oviductal epithelial cells themselves can regulate the number of spermatozoa reaching or binding to the zona pellucida thus reducing multiple sperm penetration. Suboptimal in vitro conditions, such as supplementations in IVF media, pH, and temperature during IVF, also induce polyspermic fertilization in some mammals. Species-specific differences are present regarding the relationship between insemination conditions and polyspermy.
Collapse
Affiliation(s)
- Wei-Hua Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Beijing 100080, China.
| | | | | |
Collapse
|
13
|
Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, Zaydfudim V, Conner S. The biology of cortical granules. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:117-206. [PMID: 11580200 DOI: 10.1016/s0074-7696(01)09012-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An egg-that took weeks to months to make in the adult-can be extraordinarily transformed within minutes during its fertilization. This review will focus on the molecular biology of the specialized secretory vesicles of fertilization, the cortical granules. We will discuss their role in the fertilization process, their contents, how they are made, and the molecular mechanisms that regulate their secretion at fertilization. This population of secretory vesicles has inherent interest for our understanding of the fertilization process. In addition, they have import because they enhance our understanding of the basic processes of secretory vesicle construction and regulation, since oocytes across species utilize this vesicle type. Here, we examine diverse animals in a comparative approach to help us understand how these vesicles function throughout phylogeny and to establish conserved themes of function.
Collapse
Affiliation(s)
- G M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912 , USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Muñoz-Gotera RJ, Hernández-González EO, Mendoza-Hernández G, Contreras RG, Mújica A. Exocytosis of a 60 kDa protein (calreticulin) from activated hamster oocytes. Mol Reprod Dev 2001; 60:405-13. [PMID: 11599052 DOI: 10.1002/mrd.1103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sp50 protein localized at the acrosomal region of guinea pig sperm was suggested to participate in acrosome exocytosis, the acrosome reaction (AR). On the other hand, the cortical reaction (CR), also an exocytotic event, occurs during egg activation. The aim of the present work was to identify sp50 and also to define if sp50 is present in hamster eggs, as well as its location before and after CR. Sp50 was identified as calreticulin (CRT), based on: (a) its NH(2)-terminal amino acid (25 aa) sequence, (b) a cross-recognition of pure sp50 and pure CRT with anti-CRT (from Santa Cruz, anti-CRTsc), and anti-sp50 (anti-sp50/CRT) antibodies, respectively, and (c) that both antibodies revealed a 50 kDa protein in a Brij sperm extract. On the other hand, CRT presence in eggs was positively determined by Western blotting (Wb) using anti-sp50/CRT antibody which recognized a 60 kDa protein in the egg extract, and by indirect immunofluorescence (IIF), CRT was located in the cortical granules (CG). It was defined by a granular pattern and co-localization with mannose, a specific carbohydrate of the CG. Additionally, a decrease in CRT concentration occurred in eggs after their activation and, in parallel, the protein was revealed in the egg's incubation medium. In activated eggs with zona pellucida (ZP), CRT remains as a halo in the perivitelline space and around the polar body. From these results we suggest that: (1) CRT is present in the CG of non-activated hamster eggs, (2) CRT is exocytosed during the CR, in response to egg activation, and (3) CRT might participate in the block to polyspermy, together with other CG components.
Collapse
Affiliation(s)
- R J Muñoz-Gotera
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apdo, México, DF
| | | | | | | | | |
Collapse
|
15
|
Hoodbhoy T, Dandekar P, Calarco P, Talbot P. p62/p56 are cortical granule proteins that contribute to formation of the cortical granule envelope and play a role in mammalian preimplantation development. Mol Reprod Dev 2001; 59:78-89. [PMID: 11335949 DOI: 10.1002/mrd.1009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to identify specific cortical granule protein(s) that form the cortical granule envelope and examine their role(s) in fertilization and preimplantation development. The polyclonal antibody A-BL2 was used to show that the cortical granules of mice, rats, hamsters, cows, and pigs contain a pair of proteins designated p62/p56. These proteins are released from hamster cortical granules at fertilization and contribute to formation of the cortical granule envelope, an extracellular matrix present in the perivitelline space of fertilized mammalian oocytes. P62/p56 were present in the cortical granule envelope throughout preimplantation development and were found in blastomere cortices of 4-cell to blastocyst stage embryos. Hamster oocytes fertilized in vivo in the presence of A-BL2 were all monospermic, suggesting that p62/p56 do not function in blocking polyspermy. Likewise treatment of morula to blastocyst stage hamster embryos with A-BL2 had no effect on the implantation of blastocysts. However, cleavage divisions were inhibited in vivo in a dose-dependent manner when fertilized oocytes or 2-cell embryos were treated with A-BL2. Inhibition of cell division was more pronounced in 2-cell embryos than in fertilized oocytes. This study identifies p62/p56 as cortical granule proteins that contribute to the formation of the cortical granule envelope and further supports the idea that after their release at fertilization, p62/p56 function in regulating preimplantation development at the level of oocyte and blastomere cleavage.
Collapse
Affiliation(s)
- T Hoodbhoy
- Department of Biology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Little is known about the composition and function of mammalian cortical granules. In this study, lectins were used as tools to: (1) estimate the number and molecular weight of glycoconjugates in hamster cortical granules and show what sugars are associated with each glycoconjugate; (2) identify cortical granule components that remain associated with the oolemma, cortical granule envelope, and/or zona pellucida of fertilized oocytes and preimplantation embryos; and (3) examine the role of cortical granule glycoconjugates in preimplantation embryogenesis. Microscopic examination of unfertilized oocytes revealed that the lectins PNA, DBA, WGA, RCA(120), Con A, and LCA bound to hamster cortical granules. Moreover, LCA and Con A labeled the zona pellucida, cortical granule envelope, and plasma membrane of fertilized and artificially activated oocytes and two and eight cell embryos. Lectin blots of unfertilized oocytes had at least 12 glycoconjugates that were recognized by one or more lectins. Nine of these glycoconjugates are found in the cortical granule envelope and/or are associated with the zona pellucida and plasma membrane following fertilization. In vivo functional studies showed that the binding of Con A to one or more mannosylated cortical granule components inhibited blastomere cleavage in two-cell embryos. Our data show that hamster cortical granules contain approximately 12 glycoconjugates of which nine remain associated extracellularly with the fertilized oocyte after the cortical reaction and that one or more play a role in regulating cleavage divisions.
Collapse
Affiliation(s)
- T Hoodbhoy
- Department of Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
17
|
Gross VS, Wessel G, Florman HM, Ducibella T. A monoclonal antibody that recognizes mammalian cortical granules and a 32-kilodalton protein in mouse eggs. Biol Reprod 2000; 63:575-81. [PMID: 10906067 DOI: 10.1095/biolreprod63.2.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The fertilization-induced exocytosis of egg cortical granules (CGs) is responsible for a block to polyspermy, crucial to the viability of many species. The contents of mammalian CGs have been an elusive target for analysis because of picogram quantities of CG proteins. By using media enriched in secreted CG contents from calcium ionophore-induced eggs as an immunogen, a monoclonal antibody was raised that immunolocalized to structures in the mouse egg cortex with all the hallmarks of CGs. These structures were the correct size, absent from the region over the metaphase II spindle, and greatly reduced after fertilization. Double-labeling experiments confirmed that the antibody recognized the same population of CGs as those recognized by Lens culinaris agglutinin. On Western blots, the antibody primarily recognized a 32-kDa protein (and secondarily one at approximately 25 kDa) in mouse eggs. Analysis of biotin-labeled secreted proteins from activated eggs confirmed that CGs release only a small number of major proteins (45, 34, 32, 28, and approximately 20 kDa by SDS-PAGE). We therefore propose that the 32-kDa protein identified by this antibody is likely to correspond to the 32-kDa protein released from activated eggs and that it may be involved in the block to polyspermy. These methods should make it possible to generate additional antibodies to study the structure of CG components as well as their roles in the polyspermy block and CG biogenesis.
Collapse
Affiliation(s)
- V S Gross
- Department of Anatomy and Cellular Biology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Centrioles disappear from the mouse oocyte during early oogenesis. However, it has been known for some time that multiple structures known as microtubule organizing centers (MTOC) form the spindle poles during meiosis as well as the mitotic poles during early cleavage. The objective of this study was to identify and describe the structures which exist prior to the appearance of the multiple MTOC associated with meiotic division. Reported here for the first time is a description of the unique structures which exist before the onset of oocyte maturation, their location, and microtubule (MT) nucleating ability. Correlative confocal, immuno-, and electron microscopic studies of mouse oocytes released from ovaries directly into 2% paraformaldehyde (time zero) show two large gamma-tubulin-positive structures in the cortex, averaging 10 microm in diameter. The present work is the first to demonstrate that although these structures contain gamma-tubulin, they do not resemble MTOC morphologically nor do they appear to nucleate MT. They are termed here multivesicular aggregates (MVA), and ultrastructural analysis reveals that they contain a variety of vesicular structures including many ring structures of approximately 25 nm. At the onset of maturation, these two MVA migrate toward the GV breaking into smaller units, only some of which mature into MTOC and nucleate MT. These correlative microscopic studies support the conclusion that MVA are centrosomal precursors, but with a unique ultrastructure. The ultrastructural organization of MVA may explain the cryptic function of MTOC in the prematuration environment of the dictyate oocyte.
Collapse
Affiliation(s)
- P G Calarco
- University of California, San Francisco 94143, USA.
| |
Collapse
|
19
|
Wassarman PM, Florman HM. Cellular Mechanisms During Mammalian Fertilization. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Avilés M, Castells MT, Martínez-Menárguez JA, Abascal I, Ballesta J. Localization of penultimate carbohydrate residues in zona pellucida and acrosomes by means of lectin cytochemistry and enzymatic treatments. THE HISTOCHEMICAL JOURNAL 1997; 29:583-92. [PMID: 9347355 DOI: 10.1023/a:1026432211012] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lectins from peanuts (PNA) and soy beans (SBA) bind terminal residues of galactose (Gal) and N-acetyl-galactosamine (GalNAc) respectively. Galactose oxidase oxidizes the hydroxyl group at C-6 of terminal Gal and GalNAc blocking the binding of PNA and SBA. Binding of these lectins to sugar residues is also severely limited by the existence of terminal residues of sialic acid. In the present study, lectin cytochemistry in combination with enzymatic treatments and quantitative analysis has been applied at light and electron microscopical levels to develop a simple methodology allowing the in situ discrimination between penultimate and terminal Gal/GalNAc residues. The areas selected for the demonstration of the method included rat zona pellucida and acrosomes of rat spermatids, which contain abundant glycoproteins with terminal Gal/GalNAc residues. Zona pellucida was labelled by LFA, PNA and SBA. After galactose oxidase treatment, terminal Gal/GalNAc residues are oxidized, and reactivity to PNA/SBA is abolished. The sequential application of galactose oxidase, neuraminidase and PNA/SBA has the following effects: (i) oxidation of terminal Gal/GalNAc residues; (ii) elimination of terminal sialic acid residues rendering accessible to the lectins preterminal Gal/GalNAc residues; and (iii) binding of the lectins to the sugar residues. Acrosomes were reactive to PNA and SBA. No LFA reactivity was detected, thus indicating the absence of terminal sialic acid residues. Therefore, no labelling was observed after both galactose oxidase-PNA/SBA and galactose oxidase-neuraminidase-PNA/SBA sequences. In conclusion, the combined application of galactose oxidase, neuraminidase and PNA/SBA cytochemistry is a useful technique for the demonstration of penultimate carbohydrate residues with affinity for these lectins.
Collapse
Affiliation(s)
- M Avilés
- Department of Cell Biology, Medical School, University of Murcia, Spain
| | | | | | | | | |
Collapse
|
21
|
Avilés M, Jaber L, Castells MT, Kan FK, Ballesta J. Modifications of the lectin binding pattern in the rat zona pellucida after in vivo fertilization. Mol Reprod Dev 1996; 44:370-81. [PMID: 8858607 DOI: 10.1002/(sici)1098-2795(199607)44:3<370::aid-mrd11>3.0.co;2-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The zona pellucida (ZP) is an extracellular matrix surrounding the mammalian oocyte. It is involved in the sperm-egg adhesion phenomenon, induces the acrosome reaction, and participates in the late blockage to polyspermy. Thus, during the process of fertilization the cortical reaction is induced and the biochemical and biological properties of the ZP are modified. Some of these changes have been suggested to prevent the polyspermy. However, the mechanisms behind most of these changes are not well understood. Carbohydrate residues of the ZP glycoproteins have been shown to play a key role in the early step of fertilization. In the present study, the changes produced in the terminal oligosaccharide sequences of the rat ZP glycoproteins after in vivo fertilization were investigated by means of lectin-gold cytochemistry. A comparative quantitative analysis of the density of labeling in the ZP before and after fertilization was carried out by automatic counting of gold particles. The ZP of fertilized and unfertilized eggs were labeled by a battery of lectins including PNA, LFA, MAA, AAA, DSA, RCA I, and WGA. For all lectin studied in both fertilized and unfertilized eggs the labeling was preferentially located in the inner region of the ZP. After fertilization, binding of PNA, LFA, MAA, AAA, and DSA decreased in both inner and outer regions of the ZP. Labeling of RCA I-binding sites only decreased in the inner ZP, whereas reactivity to WGA was increased in the inner ZP, whereas reactivity to WGA was increased in the inner area of the ZP. Digestion of the thin-sections with neuraminidase prior to labeling with WGA resulted in a decrease of labeling for WGA binding sites. However, the labeling density of WGA binding sites was similar in both unfertilized and fertilized eggs upon treatment with neuraminidase. The present results demonstrate that the oligosaccharide chains contained in the rat ZP are modified after fertilization of the oocyte. Cortical granules of the oocytes might be involved in these modifications by two mechanisms: 1) by hydrolysis of terminal carbohydrate residues of ZP glycoproteins by specific glycosidases contained in the granules; and 2) by addition of new glycoproteins to the ZP after the exocytosis of the cortical granules (cortical reaction).
Collapse
Affiliation(s)
- M Avilés
- Department of Cell Biology, School of Medicine, University of Murcia, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
Recent studies have extended our knowledge regarding the contents of mammalian cortical granules (CG) and their function in postfertilization events. Cytochemical staining has demonstrated the presence of carbohydrates within mammalian CG, and lectin-binding studies have shown that these carbohydrates include alpha-D-mannose, alpha-D-GalNAc, and galactose residues in the hamster, alpha-D-mannose in the mouse and cat, and beta-D-Gal(1,3)-D-GalNAc in the pig. Following fertilization and artificial activation, mannosylated material is released from CG and can be found on the oolemma and within the perivitelline space (PVS) of hamster oocytes. Fertilized or artificially activated rabbit, mouse, and human oocytes also release mannosylated, fucosylated and sialylated, and fucosylated material, respectively, which localizes to the oolemma. These glycosylated materials are probably of CG origin, although they have not been directly localized to the CG in rabbit, mice, and humans. The function(s) of the glycosylated material released from mammalian oocytes is not known, although it may participate in blocking polyspermy at the level of the plasma membrane, PVS, and/or zona pellucida (ZP), or it may facilitate preimplantation embryonic development. Proteinases, including tissue plasminogen activator, are also released from mammalian oocytes following fertilization and artificial activation, suggesting that they are of CG origin. These proteinases modify the ZP such that it is no longer receptive to sperm, and some proteinases have been suggested to bring about ZP hardening (an increased resistance to denaturing agents) by an unknown mechanism. Mouse ZP may also be hardened by an ovoperoxidase (cross-links tyrosine residues) cytochemically identified in mouse CG and CG exudate. The phenomena of ZP hardening in mammalian zygotes is not well understood but is likely to function in blocking polyspermic penetration of the ZP and/or in protecting embryos during preimplantation development. Recently, a 75 kD protein (p75) has been immunocytochemically localized to mouse CG and to the PVS of fertilized oocytes and two-cell embryos. The identity and function of p75 remains to be determined. Heparin binding placental protein may also be a CG component, since it is released from hamster oocytes following fertilization. It has not, however, been directly demonstrated to be a CG component, and its functions in fertilization and/or early embryonic development have yet to be defined.
Collapse
Affiliation(s)
- T Hoodbhoy
- Department of Biology, University of California, Riverside 92521
| | | |
Collapse
|
23
|
Miller DJ, Gong X, Decker G, Shur BD. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy. J Cell Biol 1993; 123:1431-40. [PMID: 8253842 PMCID: PMC2290897 DOI: 10.1083/jcb.123.6.1431] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N-acetylglucosaminidase found in cortical granules was identified as beta-hexosaminidase B, the beta, beta homodimer. Inhibition of N-acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase-binding site, accounting for the block in sperm binding to the zona pellucida.
Collapse
Affiliation(s)
- D J Miller
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
24
|
Jin M, Nilsson BO. Enhanced production of monoclonal antibodies against zona pellucida-free, unfertilized mouse oocytes by intrasplenic immunization. Hybridoma (Larchmt) 1992; 11:689-99. [PMID: 1284119 DOI: 10.1089/hyb.1992.11.689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Monoclonal antibodies were obtained by intrasplenic insertion of a total of 40-50 zona pellucida-free, unfertilized mouse oocytes into each mouse. The oocytes were prepared by a combined enzyme-mechanical method without impairing the fertility of the oocyte or inducing parthenogenesis. Of a total of 1063 hybrids obtained, 15 yielded supernatants with positive reactions to unfertilized oocytes. Tests for preimplantation stage specificity demonstrated that 9 of the supernatants detected antigen epitopes in unfertilized oocytes only. The other supernatants showed positive reaction patterns to various embryonal stages of the preimplantation period. Two supernatants recognized materials in the culture medium shedded by zona pellucida-free oocytes. Thus, by applying intrasplenic immunization, the production of antibodies against zona pellucida-free mouse oocytes is enhanced. The procedures described outline a rational way of selecting antibodies of interest for research in the mechanism of fertilization.
Collapse
Affiliation(s)
- M Jin
- Department of Human Anatomy, Uppsala University, Sweden
| | | |
Collapse
|
25
|
Pierce KE, Grunvald EL, Schultz RM, Kopf GS. Temporal pattern of synthesis of the mouse cortical granule protein, p75, during oocyte growth and maturation. Dev Biol 1992; 152:145-51. [PMID: 1628752 DOI: 10.1016/0012-1606(92)90164-c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously demonstrated that a protein of M(r) 75,000 (p75) is localized to cortical granules (CGs) in mouse oocytes and eggs and is released upon activation or fertilization of eggs (K.E. Pierce, M. C. Siebert, G. S. Kopf, R. M. Schultz, and P. G. Calarco, 1990, Dev. Biol. 141, 381-392). To examine the temporal pattern of synthesis of p75 during the early stages of CG formation, growing oocytes, which were isolated from juvenile mice, were incubated for 4 hr in medium containing [35S]methionine, and radiolabeled proteins were immunoprecipitated using an antiserum that detects p75. Synthesis of p75 is detected at low levels in the smallest oocytes examined (less than 20 microns). Synthesis of p75 relative to total protein synthesis increases about 12-fold during oocyte growth from the 20-40 microns size and then remains constant throughout the remaining period of oocyte growth (40-70 microns). In the fully grown, germinal vesicle (GV)-intact oocyte (70-80 microns), immunoprecipitated p75 comprises approximately 1.5% of the total amount of radiolabeled protein. Three hours after the transfer of these oocytes to a medium that supports resumption of meiosis and GV breakdown in vitro, oocytes subjected to a 1-hr labeling pulse display a 35% decrease in the relative level of p75 synthesis. By 15 hr of maturation, p75 synthesis was reduced to 14% of that in the fully grown, GV-intact oocyte and this is similar to the level of p75 synthesis in ovulated eggs. The level of p75 synthesis following in vitro translation of total egg RNA is only 38% lower than that obtained from total oocyte RNA. In addition, synthesis of p75 is observed following in vitro translation of oocyte, but not egg, poly(A)+ RNA. These results are consistent with p75 synthesis during oocyte maturation being under translational control.
Collapse
Affiliation(s)
- K E Pierce
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
26
|
Zhang X, Rutledge J, Khamsi F, Armstrong DT. Release of tissue-type plasminogen activator by activated rat eggs and its possible role in the zona reaction. Mol Reprod Dev 1992; 32:28-32. [PMID: 1515147 DOI: 10.1002/mrd.1080320106] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The resumption of meiosis results in synthesis of tissue-type plasminogen activator (tPA) in the rat and mouse oocytes (Haurte et al., Cell 43:551-558, 1985). The present study demonstrates that freshly ovulated rat oocytes released their tPA into the surrounding medium upon in vitro activation by sperm penetration or treatment with a calcium ionophore. The presence of a neutralizing monoclonal anti-tPA antibody during in vitro activation by the calcium ionophore inhibited the activation-induced zona hardening and also preserved the ability of the oocyte to be penetrated by sperm subsequent to activation. Rat oocytes undergo zona hardening during in vitro maturation in the absence of serum, presumably as a result of spontaneous cortical granule release, based on findings in mice and hamsters. In the present study, the anti-tPA antibody prevented the zona hardening and enhanced partition by spermatozoa of rat oocytes that were matured in vitro without serum. Collectively, the observations reported have suggest a possible role of tPA released during the cortical granule reaction in the zona reaction, which contributes to the block to polyspermy.
Collapse
Affiliation(s)
- X Zhang
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
27
|
Eppig JJ, Wigglesowrth K, O'Brien MJ. Comparison of embryonic developmental competence of mouse oocytes grown with and without serum. Mol Reprod Dev 1992; 32:33-40. [PMID: 1381197 DOI: 10.1002/mrd.1080320107] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first objective of this study was to determine whether oocyte growth in serum-free medium affects the solubility of the zona pellucida to alpha-chymotrypsin digestion, which is an index of zona pellucida "hardening" and reflects the potential penetrability of the zona pellucida by sperm. Oocyte-granulosa cell complexes were isolated from the preantral follicles of 12-day-old mice and cultured for 10 days in medium containing 5% fetal bovine serum (FBS) or in serum-free medium. The zonae pellucidae of oocytes grown in serum-free medium were four times as hard as freshly isolated germinal vesicle (GV)-stage oocytes grown in vivo or oocytes grown in vitro in FBS-containing medium. The hardening of the zonae pellucidae of oocytes grown in serum-free medium was prevented by addition of fetuin. The second objective was to compare the competence to undergo embryogenesis of oocytes that grew in serum-free vs. FBS-containing medium. Approximately 70% of the oocytes underwent maturation regardless of whether the medium was serum-free or contained FBS. Of the mature ova grown in medium containing FBS, 53% cleaved to the two-cell stage after insemination compared with only 6% of the ova grown in serum-free medium. Addition of fetuin to the serum-free medium used for oocyte growth increased the frequency of cleavage to the two-cell stage. Of the embryos derived from oocytes that grew in FBS-containing medium, 70% completed the two-cell stage to blastocyst transition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Eppig
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | |
Collapse
|
28
|
Dandekar P, Talbot P. Perivitelline space of mammalian oocytes: extracellular matrix of unfertilized oocytes and formation of a cortical granule envelope following fertilization. Mol Reprod Dev 1992; 31:135-43. [PMID: 1599682 DOI: 10.1002/mrd.1080310208] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracellular matrices (ECM) present around unfertilized and fertilized mammalian oocytes were studied ultrastructurally in samples prepared in the presence of ruthenium red to facilitate stabilization of extracellular materials. Unfertilized mouse, hamster, and human oocytes have an ECM comprising granules and filaments in their perivitelline spaces (PVS). This matrix is more abundant in the human than in hamsters and mice. The granule/filament matrix appears identical to the matrix seen between cumulus and corona radiata cells following ruthenium red processing and previously shown to comprise protein and hyaluronic acid. By including ruthenium red during fixation, it is possible to demonstrate the existence of cortical granule exudate in the PVS of fertilized oocytes from hamsters, mice, and humans. Much of the cortical granule exudate is trapped in the PVS and forms a new coat around the fertilized oocyte. This material is particulate when stained with ruthenium red and appears to be uniformly dispersed around the entire oocyte surface. We refer to this new coat as the cortical granule envelope. This envelope is observed in the PVS of all developmental stages up to and including blastocysts in all three species. Following hatching of mouse and hamster blastocysts, the cortical granule envelope is no longer present. Possible functions of this envelope are discussed.
Collapse
Affiliation(s)
- P Dandekar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California School of Medicine, San Francisco
| | | |
Collapse
|
29
|
Snell WJ. Adhesion and signalling during fertilization in multicellular and unicellular organisms. Curr Opin Cell Biol 1990; 2:821-32. [PMID: 2083083 DOI: 10.1016/0955-0674(90)90079-t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- W J Snell
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|