1
|
Abstract
The increase in global lifespan has in turn increased the prevalence of osteoarthritis which is now the most common type of arthritis. Cartilage tissue located on articular joints erodes during osteoarthritis which causes pain and may lead to a crippling loss of function in patients. The pathophysiology of osteoarthritis has been understudied and currently no disease modifying treatments exist. The only current end-point treatment remains joint replacement surgery. The primary risk factor for osteoarthritis is age. Clinical and basic research is now focused on understanding the ageing process of cartilage and its role in osteoarthritis. This chapter will outline the physiology of cartilage tissue, the clinical presentation and treatment options for the disease and the cellular ageing processes which are involved in the pathophysiology of the disease.
Collapse
|
2
|
Luczak M, Krzeszowiec-Jeleń W, Konopka-Postupolska D, Wojtaszek P. Collagenase as a useful tool for the analysis of plant cellular peripheries. PHYTOCHEMISTRY 2015; 112:195-209. [PMID: 25435175 DOI: 10.1016/j.phytochem.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries.
Collapse
Affiliation(s)
- Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
3
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
4
|
Turnay J, Olmo N, Lizarbe MA, von der Mark K. Changes in the expression of annexin A5 gene during in vitro chondrocyte differentiation: influence of cell attachment. J Cell Biochem 2002; 84:132-42. [PMID: 11746522 DOI: 10.1002/jcb.1272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several lines of evidence indicate that annexin A5, a membrane-associated protein with calcium-channel activity, plays a key role in cartilage calcification during endochondral ossification. As a major constituent of cartilage matrix vesicles, which are released from microvilli of hypertrophic chondrocytes, it is involved in calcium uptake necessary for the initial stages of cartilage calcification. Little is known, however, concerning transcriptional regulation of the annexin A5 gene during chondrocyte differentiation. Here, we report on changes in annexin A5 expression by measuring mRNA and protein levels during in vitro differentiation of chick sternal chondrocytes to the hypertrophic phenotype. Terminal differentiation of mature sternal chondrocytes was achieved in the presence of sodium ascorbate in high-density cultures growing either in monolayer or over agarose as cell aggregates. Differentiation of chondrocytes to hypertrophic cells was followed by morphological analysis and by the onset of type X collagen expression. High expression levels of annexin A5 mRNA were detected in chondrocytes freshly isolated from the sterna by enzymatic digestion and subsequently in cells growing in monolayer, but annexin A5 gene transcription was rapidly downregulated when cells were grown in suspension as aggregates over agarose. However, protein levels did not decrease probably due to its low turnover rate. In suspension culture, annexin A5 mRNA reappeared after 3 weeks concomitantly with segregation of the aggregates into single cells and onset of chondrocyte hypertrophy. The downregulation of annexin A5 expression in cells growing as matrix-rich aggregates was reverted when extracellular matrix components were removed and cells were reseeded onto tissue culture plastic, suggesting that cell spreading, formation of focal contacts and stress fibers stimulated annexin A5 expression in proliferating as well as in hypertrophic chondrocytes.
Collapse
Affiliation(s)
- J Turnay
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Brachvogel B, Welzel H, Moch H, von der Mark K, Hofmann C, Pöschl E. Sequential expression of annexin A5 in the vasculature and skeletal elements during mouse development. Mech Dev 2001; 109:389-93. [PMID: 11731255 DOI: 10.1016/s0925-4773(01)00532-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Annexin A5 (annexin V, anchorin CII) represents the prototype member of the large annexin family, characterized by its ability to interact with phospholipids in a calcium-dependent manner and to form calcium-specific ion channels. Despite intense biochemical analysis, the in vivo expression and function of this annexin during mouse development, still remains unclear. Immunohistochemistry, in situ hybridization and reporter gene expression were used to define expression of annexin A5 during early mouse development. First, annexin A5 expression is associated with the developing vascular system. Later, expression is detected within the notochord and found in parallel to the differentiation of cartilage and bone. Therefore, expression of the Anxa5 gene may represent a novel marker characterizing cell lineages involved in the development of the vascular as well as the skeletal system.
Collapse
Affiliation(s)
- B Brachvogel
- Abteilung für Experimentelle Medizin I, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Glückstrasse 6, 91054, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Carcedo MT, Iglesias JM, Bances P, Morgan RO, Fernandez MP. Functional analysis of the human annexin A5 gene promoter: a downstream DNA element and an upstream long terminal repeat regulate transcription. Biochem J 2001; 356:571-9. [PMID: 11368787 PMCID: PMC1221871 DOI: 10.1042/0264-6021:3560571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human annexin A5 is a ubiquitous protein implicated in diverse signal transduction processes associated with cell growth and differentiation, and its gene regulation is an important component of this function. Promoter transcriptional activity was determined for a wide 5' portion of the human annexin A5 gene, from bp -1275 to +79 relative to the most 5' of several discrete transcription start points. Transfection experiments carried out in HeLa cells identified the segment from bp -202 to +79 as the minimal promoter conferring optimal transcriptional activity. Two canonical Sp1 sites in the immediate 5' flanking region of a CpG island were required for significant transcription. Strong repressive activity in the distal promoter region between bp -717 to -1153 was attributed to the presence of an endogenous retroviral long terminal repeat, homologous with long terminal repeat 47B. The downstream sequence from bp position +31 to +79 in untranslated exon 1 was also essential for transcription, as its deletion from any of the plasmid constructs abolished activity in transfection assays. Electrophoretic mobility-shift assays, Southwestern-blot analysis and affinity chromatography were used to identify a protein doublet of relative molecular mass 35 kDa that bound an octanucleotide palindromic sequence in exon 1. The DNA cis-element resembled an E-box, but did not bind higher molecular mass transcription factors, such as upstream stimulatory factor or activator protein 4. The discovery of a downstream element crucial for annexin A5 gene transcription, and its interaction with a potentially novel transcription factor or complex, may provide a clue to understanding the initiation of transcription by TATA-less, multiple start site promoters.
Collapse
Affiliation(s)
- M T Carcedo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, E-33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
7
|
Abstract
Systematic analysis of expressed sequence tags in dbEST yielded an expression profile of the ten known human annexins and led to the discovery of a novel subfamily expressed mainly in differentiating tissues. Full-length cDNAs encoded a 338-amino acid protein with less than 40% identity to other annexins, an atypical amino acid composition, and an insertion and deletion in internal repeat 3. The most striking feature was a complete ablation of all four type II calcium-binding sites in the conserved tetrad core. Annexin 31 thus constitutes a unique, natural probe for investigating the role of membrane binding in annexin function.
Collapse
Affiliation(s)
- R O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Spain
| | | |
Collapse
|
8
|
Jans SW, de Jong YF, Reutelingsperger CP, van der Vusse GJ, van Bilsen M. Differential expression and localization of annexin V in cardiac myocytes during growth and hypertrophy. Mol Cell Biochem 1998; 178:229-36. [PMID: 9546604 DOI: 10.1023/a:1006803900554] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently it was shown that annexin V is the most prominent member of the annexin family in the adult heart [1]. Amongst others, annexin V has been suggested to play a role in developmental processes. The aim of the present study was to explore whether in the heart annexin V content and localization change during maturational and hypertrophic growth, in order to obtain indications that annexin V is involved in cardiac growth processes. First, in the intact rat heart annexin V content and localization were studied during perinatal development. It was clearly demonstrated that annexin V content in total heart transiently increased in the first week after birth, from 0.79 +/- 0.06 microg/mg protein at 1 day before birth to a peak value of 1.24 +/- 0.08 microg/mg protein 6 days after birth, whereafter annexin V protein levels declined to a value of 0.70 +/- 0.06 microg/mg protein at 84 days after birth (p < 0.05). Differences in annexin V content were also observed between myocytes isolated from neonatal and adult hearts [0.81 +/- 0.09 and 0.17 +/- 0.08 microg/mg protein, respectively (p < 0.05)]. Moreover, during cardiac maturational growth the subcellular localization of annexin V might change from a cytoplasmic to a more prominent sarcolemmal localization. Second, in vivo hypertrophy induced by aortic coarctation resulted in a marked degree of hypertrophy (22% increase in ventricular weight), but was not associated with a change in annexin V localization or content. The quantitative results obtained with intact hypertrophic rat hearts are supported by findings in neonatal ventricular myocytes, in which hypertrophy was induced by phenylephrine (10(-5) M). In the latter model no changes in annexin V content could be observed either. In conclusion, the marked alterations in annexin V content during the maturational growth in the heart suggest a possible involvement of this protein in this process. In contrast, the absence of changes in annexin V content and localization in hypertrophied hearts compared to age matched control hearts suggests that annexin V does not play a crucial role in the maintenance of the hypertrophic phenotype of the cardiac muscle cell. This notion is supported by observations in phenylephrine-induced hypertrophied neonatal cardiomyocytes.
Collapse
Affiliation(s)
- S W Jans
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Abstract
Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- N R Smalheiser
- Department of Pediatrics, University of Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Imai Y, Kohsaka S. Structure of Rat Annexin V Gene and Molecular Diversity of its Transcripts. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20815.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abstract
The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca(2+)-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.
Collapse
Affiliation(s)
- D M Waisman
- Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
12
|
Turnay J, Pfannmüller E, Lizarbe MA, Bertling WM, von der Mark K. Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem 1995; 58:208-20. [PMID: 7673328 DOI: 10.1002/jcb.240580210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have cloned the full coding cDNA sequence of chicken annexin V and of a mutant lacking 8 amino acid residues of the N-terminal tail for prokaryotic expression. Both proteins were synthesized in Escherichia coli upon induction with isopropyl thio-beta-D-galactoside, and were purified following two different protocols: one based on the ability of these proteins to interact reversibly with liposomes in the presence of calcium, and the other based on two sequential ion-exchange chromatographic steps. Spectroscopical analysis of recombinant annexin V revealed that binding of calcium did not change the circular dichroism spectra indicating no significant changes on the secondary structure; however, a conformational change affecting the exposition to the solvent of the tryptophan residue 187 was detected by analysis of fluorescence emission spectra. Recombinant annexin V binds with high affinity to collagen types II and X, and with lower affinity to collagen type I in a calcium-independent manner. Heat denaturing of collagen decreases this interaction while pepsin-treatment of collagen almost completely abolishes annexin V binding. Mutated annexin V interacts with collagen in a similar way as the nonmutated recombinant protein, indicating that the N-terminal tail of annexin V is not essential for collagen binding.
Collapse
Affiliation(s)
- J Turnay
- Max-Planck Society, Medical Clinic III, University of Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Fernández MP, Morgan RO, Fernández MR, Carcedo MT. The gene encoding human annexin V has a TATA-less promoter with a high G+C content. Gene 1994; 149:253-60. [PMID: 7958998 DOI: 10.1016/0378-1119(94)90157-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Annexin V is a phospholipase A2 and protein kinase C inhibitory protein with calcium channel activity and an undefined role in cellular signal transduction, inflammation, growth and differentiation. Three genomic clones for human annexin V (ANX5) were characterized by restriction analysis, Southern blotting and sequencing. ANX5 spans at least 29 kb of the human genome and contains 13 exons ranging in length from 44 to 513 bp and 12 introns from 232 bp to 8 kb. The absence of a typical TATA box and the presence of high G+C content and Sp1-binding sites in its promoter characterize it as a 'housekeeping' gene and account for its broad pattern of expression. Potential binding sites for cis-regulatory elements identified in the 5'-upstream region of annexin V are consistent with its known regulation by oncogenic and growth-related stimuli. ANX5, like its chick homologue, differs from the genes encoding annexins I, II and III in features of its promoter and in the size of its exons 1, 2 and 3 in ways that may impart individuality to its regulation and function.
Collapse
Affiliation(s)
- M P Fernández
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
14
|
Abstract
Anchorin CII (annexin V) was first characterized as a collagen-binding protein and later identified as the chick homologue of human endonexin II, a member of the annexin gene family. Its gene (anx5) structure and sequence have been investigated to provide insight into the evolution and regulation of this important protein, and to elucidate its putative role in signal transduction and cellular differentiation. Four chick genomic clones encoding anchorin CII were isolated and characterized by restriction analysis, Southern blotting and sequencing. The anchorin CII-encoding gene spans about 24 kb and consists of 13 exons ranging in length from 50 to 561 bp, interrupted by 12 introns of 94 bp to 7 kb. Its promoter sequence contained no TATA box, but did display a high G+C content and multiple Sp1-binding sites typical of 'housekeeping' genes. Potential binding sites for transcription factors in the 5'-upstream region are consistent with regulation of anx5 expression by mitogens, oncoproteins, steroids and possibly metals. Genomic Southern blotting confirmed that chick anx5 is present as a single-copy gene.
Collapse
Affiliation(s)
- M P Fernández
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | |
Collapse
|
15
|
Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:63-93. [PMID: 8155692 DOI: 10.1016/0304-4157(94)90019-1] [Citation(s) in RCA: 851] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Raynal
- Laboratory of Cell Biology and Genetics, NIH, NIDDK, Bethesda, MD 20892
| | | |
Collapse
|
16
|
Pfannmüller E, Turnay J, Bertling W, von der Mark K. Organisation of the chicken annexin V gene and its correlation with the tertiary structure of the protein. FEBS Lett 1993; 336:467-71. [PMID: 8282112 DOI: 10.1016/0014-5793(93)80857-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chicken annexin V (anchorin CII) is a collagen binding, membrane-associated molecule with Ca2+ channel activity. Here we report on the coding sequences, promoter region, size and distribution of exons, and exon-intron junctions of the chicken annexin V gene. It is about 25 kb long and codes for 13 short exons between 50 and 581 bp length. Exon sizes and locations of splice sites are almost completely homologous to those of the human and mouse annexin II or pigeon annexin I genes, although there is only 50-60% homology in the sequence of the corresponding proteins. The four repeat structure and symmetry of the annexin V as evident from sequence and X-ray analysis studies is only partially reflected in this highly conserved exon distribution. In the first two repeats of chicken annexin V the exons correlate with protein domains containing one, two, or three alpha-helices, while in the repeats 3 and 4 exon junctions and alpha-helical domains do not correlate. The analysis of the promoter structure revealed the absence of a typical TATA-box, but a GC-rich region which may possibly promote transcription from several start sites.
Collapse
Affiliation(s)
- E Pfannmüller
- Max-Planck-Society, Clinical Research Units for Rheumatology, Medical Clinic III, University of Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|