1
|
Ortego-Isasa I, Ortega-Morán JF, Lozano H, Stieglitz T, Sánchez-Margallo FM, Usón-Gargallo J, Pagador JB, Ramos-Murguialday A. Colonic Electrical Stimulation for Chronic Constipation: A Perspective Review. Biomedicines 2024; 12:481. [PMID: 38540095 PMCID: PMC10967790 DOI: 10.3390/biomedicines12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.
Collapse
Affiliation(s)
- Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | | | - Héctor Lozano
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany;
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Jesús Usón-Gargallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
- Department of Neurology and Stroke, University of Tubingen, 72076 Tubingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, 72076 Tubingen, Germany
- Athenea Neuroclinics, 20014 San Sebastian, Spain
| |
Collapse
|
2
|
Sebastianelli G, Casillo F, Abagnale C, Renzo AD, Cioffi E, Parisi V, Lorenzo CD, Fazio F, Petricola F, Mattia C, Serrao M, Schoenen J, Coppola G. Central sensitization mechanisms in chronic migraine with medication overuse headache: a study of thalamocortical activation and lateral cortical inhibition. Cephalalgia 2023; 43:3331024231202240. [PMID: 37795647 DOI: 10.1177/03331024231202240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND It is unclear whether cortical hyperexcitability in chronic migraine with medication overuse headache (CM-MOH) is due to increased thalamocortical drive or aberrant cortical inhibitory mechanisms. METHODS Somatosensory evoked potentials (SSEP) were performed by electrical stimulation of the median nerve (M), ulnar nerve (U) and simultaneous stimulation of both nerves (MU) in 27 patients with CM-MOH and, for comparison, in 23 healthy volunteers (HVs) of a comparable age distribution. We calculated the degree of cortical lateral inhibition using the formula: 100 - [MU/(M + U) × 100] and the level of thalamocortical activation by analyzing the high frequency oscillations (HFOs) embedded in parietal N20 median SSEPs. RESULTS Compared to HV, CM-MOH patients showed higher lateral inhibition (CM-MOH 52.2% ± 15.4 vs. HV 40.4% ± 13.3; p = 0.005), which positively correlated with monthly headache days, and greater amplitude of pre-synaptic HFOs (p = 0.010) but normal post-synaptic HFOs (p = 0.122). CONCLUSION Our findings suggest that central neuronal circuits are highly sensitized in CM-MOH patients, at both thalamocortical and cortical levels. The observed changes could be due to the combination of dysfunctional central pain control mechanisms, hypersensitivity and hyperresponsiveness directly linked to the chronic intake of acute migraine drugs.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Francesco Casillo
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Chiara Abagnale
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Federica Fazio
- Specialization School in Medicine and Palliative Care, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Fausto Petricola
- Specialization School in Medicine and Palliative Care, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Consalvo Mattia
- Specialization School in Medicine and Palliative Care, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Jean Schoenen
- CHU de Liège, Neurology, Headache Research Unit, Citadelle Hospital, Liège, Belgium
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
- Specialization School in Medicine and Palliative Care, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
3
|
The function of the lateral inhibitory mechanisms in the somatosensory cortex is normal in patients with chronic migraine. Clin Neurophysiol 2020; 131:880-886. [DOI: 10.1016/j.clinph.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/06/2019] [Accepted: 01/01/2020] [Indexed: 01/06/2023]
|
4
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
5
|
Saradjian AH, Teasdale N, Blouin J, Mouchnino L. Independent Early and Late Sensory Processes for Proprioceptive Integration When Planning a Step. Cereb Cortex 2019; 29:2353-2365. [PMID: 29750263 DOI: 10.1093/cercor/bhy104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Somatosensory inputs to the cortex undergo an early and a later stage of processing which are characterized by an early and a late somatosensory evoked potentials (SEP). The early response is highly representative of the stimulus characteristics whereas the late response reflects a more integrative, task specific, stage of sensory processing. We hypothesized that the later processing stage is independent of the early processing stage. We tested the prediction that a reduction of the first volley of input to the cortex should not prevent the increase of the late SEP. Using the sensory interference phenomenon, we halved the amplitude of the early response to somatosensory input of the ankle joints (evoked by vibration) when participants either planned a step forward or remained still. Despite the initial cortical response to the vibration being massively decreased in both tasks, the late response was still enhanced during step planning. Source localization indicated the posterior parietal cortex (PPC) as the likely origin of the late response modulation. Overall these results support the dissociation between the processes underlying the early and late SEP. The later processing stage could involve both direct and indirect thalamic connections to PPC which bypass the postcentral somatosensory cortex.
Collapse
Affiliation(s)
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,CHU de Québec - Hôpital du Saint-Sacrement, Centre d'excellence sur le vieillissement de Québec, Québec, QC, Canada
| | - Jean Blouin
- Aix-Marseille Univ, CNRS, LNC FR 3C 3512, Marseille, France
| | | |
Collapse
|
6
|
Carter JR. Microneurography and sympathetic nerve activity: a decade-by-decade journey across 50 years. J Neurophysiol 2019; 121:1183-1194. [PMID: 30673363 DOI: 10.1152/jn.00570.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The technique of microneurography has advanced the field of neuroscience for the past 50 years. While there have been a number of reviews on microneurography, this paper takes an objective approach to exploring the impact of microneurography studies. Briefly, Web of Science (Thomson Reuters) was used to identify the highest citation articles over the past 50 years, and key findings are presented in a decade-by-decade highlight. This includes the establishment of microneurography in the 1960s, the acceleration of the technique by Gunnar Wallin in the 1970s, the international collaborations of the 1980s and 1990s, and finally the highest impact studies from 2000 to present. This journey through 50 years of microneurographic research related to peripheral sympathetic nerve activity includes a historical context for several of the laboratory interventions commonly used today (e.g., cold pressor test, mental stress, lower body negative pressure, isometric handgrip, etc.) and how these interventions and experimental approaches have advanced our knowledge of cardiovascular, cardiometabolic, and other human diseases and conditions.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University , Houghton, Michigan
| |
Collapse
|
7
|
Lee MS, Lee MJ, Conte A, Berardelli A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: Pathophysiological correlates and role in motor control deficits. Clin Neurophysiol 2018; 129:442-447. [DOI: 10.1016/j.clinph.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
8
|
Haavik H, Niazi IK, Holt K, Murphy B. Effects of 12 Weeks of Chiropractic Care on Central Integration of Dual Somatosensory Input in Chronic Pain Patients: A Preliminary Study. J Manipulative Physiol Ther 2017; 40:127-138. [PMID: 28196631 DOI: 10.1016/j.jmpt.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this preliminary study was to assess whether the dual somatosensory evoked potential (SEP) technique is sensitive enough to measure changes in cortical intrinsic inhibitory interactions in patients with chronic neck or upper extremity pain and, if so, whether changes are associated with changes in pain scores. METHODS The dual peripheral nerve stimulation SEP ratio technique was used for 6 subjects with a history of chronic neck or upper limb pain. SEPs were recorded after left or right median and ulnar nerve stimulation at the wrist. SEP ratios were calculated for the N9, N13, P14-18, N20-P25, and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median and ulnar nerves. Outcome measures of SEP ratios and subjects' visual analog scale rating of pains were recorded at baseline, after a 2-week usual care control period, and after 12 weeks of multimodal chiropractic care (chiropractic spinal manipulation and 1 or more of the following: exercises, peripheral joint adjustments/manipulation, soft tissue therapy, and pain education). RESULTS A significant decrease in the median and ulnar to median plus ulnar ratio and the median and ulnar amplitude for the cortical P22-N30 SEP component was observed after 12 weeks of chiropractic care, with no changes after the control period. There was a significant decrease in visual analog scale scores (both for current pain and for pain last week). CONCLUSION The dual SEP ratio technique appears to be sensitive enough to measure changes in cortical intrinsic inhibitory interactions in patients with chronic neck pain. The observations in 6 subjects revealed that 12 weeks of chiropractic care improved suppression of SEPs evoked by dual upper limb nerve stimulation at the level of the motor cortex, premotor areas, and/or subcortical areas such as basal ganglia and/or thalamus. It is possible that these findings explain one of the mechanisms by which chiropractic care improves function and reduces pain for chronic pain patients.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand..
| | - Imran Khan Niazi
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand
| | - Kelly Holt
- Centre for Chiropractic, New Zealand College of Chiropractic, Mount Wellington, Auckland, New Zealand
| | - Bernadette Murphy
- Department of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
9
|
Nakajima T, Wasaka T, Kida T, Nishimura Y, Fumoto M, Sakamoto M, Takashi E. Changes in Somatosensory Evoked Potentials and Hoffmann Reflexes during Fast Isometric Contraction of Foot Plantarflexor in Humans. Percept Mot Skills 2016; 103:847-60. [PMID: 17326514 DOI: 10.2466/pms.103.3.847-860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, the extent to which the early component of somatosensory evoked potentials (SEPs) and the Hoffmann (H-) reflex induced by stimulation of the posterior tibial nerve are altered during the ascending and descending phases of fast plantarflexion was investigated. SEPSs and H-reflex of the soleus following tibial nerve stimulation were examined during fast plantarflexion when performed by nine normal subjects. The analyses focused on differences in amplitude modulation of the P30-P40 component of SEP and the H-reflex between the ascending and descending phases of full-wave rectified and averaged soleus electromyographic (EMG) activity. The H-reflex amplitude was significantly increased and decreased during the ascending and descending phases more than under resting control conditions, respectively. The reduction of SEP amplitude was 49% for the ascending phase and 83% for the descending phases with respect to the resting situation. Modulation of SEP during the ascending and descending phases was robustly retained even during ischemic nerve blockade of large diameter afferent fibers. These findings suggest that the transmission of afferent inputs from muscle spindles to motoneurons and to the somatosensory cortex during fast isometric contraction of the plantar flexor is regulated in a time-dependent fashion by descending commands.
Collapse
|
10
|
Mildren RL, Bent LR. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint. J Appl Physiol (1985) 2016; 120:855-64. [PMID: 26823342 DOI: 10.1152/japplphysiol.00810.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/21/2016] [Indexed: 11/22/2022] Open
Abstract
It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle.
Collapse
Affiliation(s)
| | - Leah R Bent
- University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Coppola G, Bracaglia M, Di Lenola D, Iacovelli E, Di Lorenzo C, Serrao M, Evangelista M, Parisi V, Schoenen J, Pierelli F. Lateral inhibition in the somatosensory cortex during and between migraine without aura attacks: Correlations with thalamocortical activity and clinical features. Cephalalgia 2015; 36:568-78. [DOI: 10.1177/0333102415610873] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/09/2015] [Indexed: 12/23/2022]
Abstract
Background We studied lateral inhibition in the somatosensory cortex of migraineurs during and between attacks, and searched for correlations with thalamocortical activity and clinical features. Participants and methods Somatosensory evoked potentials (SSEP) were obtained by electrical stimulation of the right median (M) or ulnar (U) nerves at the wrist or by simultaneous stimulation of both nerves (MU) in 41 migraine without aura patients, 24 between (MO), 17 during attacks, and in 17 healthy volunteers (HVs). We determined the percentage of lateral inhibition of the N20–P25 component by using the formula [(100)–MU/(M + U)*100]. We also studied high-frequency oscillations (HFOs) reflecting thalamocortical activation. Results In migraine, both lateral inhibition (MO 27.9% vs HVs 40.2%; p = 0.009) and thalamocortical activity (MO 0.5 vs HVs 0.7; p = 0.02) were reduced between attacks, but not during. In MO patients, the percentage of lateral inhibition negatively correlated with days elapsed since the last migraine attack ( r = −0.510, p = 0.01), monthly attack duration ( r = −0.469, p = 0.02) and severity ( r = −0.443, p = 0.03), but positively with thalamocortical activity ( r = −0.463, p = 0.02). Conclusions We hypothesize that abnormal migraine cycle-dependent dynamics of connectivity between subcortical and cortical excitation/inhibition networks may contribute to clinical features of MO and recurrence of attacks.
Collapse
Affiliation(s)
- Gianluca Coppola
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Martina Bracaglia
- “Sapienza” University of Rome Polo Pontino Department of Medical and Surgical Sciences and Biotechnologies, Italy
| | - Davide Di Lenola
- “Sapienza” University of Rome Polo Pontino Department of Medical and Surgical Sciences and Biotechnologies, Italy
| | - Elisa Iacovelli
- “Sapienza” University of Rome Polo Pontino Department of Medical and Surgical Sciences and Biotechnologies, Italy
| | | | - Mariano Serrao
- “Sapienza” University of Rome Polo Pontino Department of Medical and Surgical Sciences and Biotechnologies, Italy
| | - Maurizio Evangelista
- Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Università Cattolica del Sacro Cuore/CIC, Italy
| | - Vincenzo Parisi
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-CHR Citadelle, University of Liège, Belgium
| | - Francesco Pierelli
- “Sapienza” University of Rome Polo Pontino Department of Medical and Surgical Sciences and Biotechnologies, Italy
- INM Neuromed IRCCS, Italy
| |
Collapse
|
12
|
Saradjian AH, Paleressompoulle D, Louber D, Coyle T, Blouin J, Mouchnino L. Do gravity-related sensory information enable the enhancement of cortical proprioceptive inputs when planning a step in microgravity? PLoS One 2014; 9:e108636. [PMID: 25259838 PMCID: PMC4178185 DOI: 10.1371/journal.pone.0108636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90-160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity.
Collapse
Affiliation(s)
- Anahid H. Saradjian
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Dany Paleressompoulle
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, CNRS -Aix-Marseille University, Marseille, France
| | - Didier Louber
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Thelma Coyle
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, UMR 7287, Marseille, France
| | - Jean Blouin
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
- * E-mail:
| |
Collapse
|
13
|
|
14
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
15
|
Pelosin E, Avanzino L, Marchese R, Stramesi P, Bilanci M, Trompetto C, Abbruzzese G. kinesiotaping reduces pain and modulates sensory function in patients with focal dystonia: a randomized crossover pilot study. Neurorehabil Neural Repair 2013; 27:722-31. [PMID: 23764884 DOI: 10.1177/1545968313491010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pain is one of the most common and disabling "nonmotor" symptoms in patients with dystonia. No recent study evaluated the pharmacological or physical therapy approaches to specifically treat dystonic pain symptoms. OBJECTIVE To evaluate the effectiveness of KinesioTaping in patients with cervical dystonia (CD) and focal hand dystonia (FHD) on self-reported pain (primary objective) and on sensory functions (secondary objective). METHODS Twenty-five dystonic patients (14 with CD and 11 FHD) entered a randomized crossover pilot study. The patients were randomized to 14-day treatment with KinesioTaping or ShamTaping over neck (in CD) or forearm muscles (in FHD), and after a 30-day washout period, they received the other treatment. The MAIN OUTCOME MEASURES were 3 visual analog scales (VASs) for usual pain, worst pain, and pain relief. Disease severity changes were evaluated by means of the Toronto Western Spasmodic Torticollis Rating Scale (CD) and the Writer's Cramp Rating Scale (FHD). Furthermore, to investigate possible KinesioTaping-induced effects on sensory functions, we evaluated the somatosensory temporal discrimination threshold. RESULTS Treatment with KinesioTape induced a decrease in the subjective sensation of pain and a modification in the ability of sensory discrimination, whereas ShamTaping had no effect. A significant, positive correlation was found in both groups of patients between the improvement in the subjective sensation of pain and the reduction of somatosensory temporal discrimination threshold values induced by KinesioTaping. CONCLUSIONS These preliminary results suggest that KinesioTaping may be useful in treating pain in patients with dystonia.
Collapse
|
16
|
|
17
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
18
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
22
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
|
24
|
Nakasato N. Point-to-point projection from muscle afferent to area 4 cortex. Clin Neurophysiol 2011; 122:438-439. [DOI: 10.1016/j.clinph.2010.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/11/2010] [Accepted: 08/14/2010] [Indexed: 11/27/2022]
|
25
|
Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA. Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings. J Neurophysiol 2010; 104:3029-41. [PMID: 20861430 DOI: 10.1152/jn.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The median nerve N20 and P22 SEP components constitute the initial response of the primary somatosensory cortex to somatosensory stimulation of the upper extremity. Knowledge of the underlying generators is important both for basic understanding of the initial sequence of cortical activation and to identify landmarks for eloquent areas to spare in resection planning of cortex in epilepsy surgery. We now set out to localize the N20 and P22 using subdural grid recording with special emphasis on the question of the origin of P22: Brodmann area 4 versus area 1. Electroencephalographic dipole source analysis of the N20 and P22 responses obtained from subdural grids over the primary somatosensory cortex after median nerve stimulation was performed in four patients undergoing epilepsy surgery. Based on anatomical landmarks, equivalent current dipoles of N20 and P22 were localized posterior to (n = 2) or on the central sulcus (n = 2). In three patients, the P22 dipole was located posterior to the N20 dipole, whereas in one patient, the P22 dipole was located on the same coordinate in anterior-posterior direction. On average, P22 sources were found to be 6.6 mm posterior [and 1 mm more superficial] compared with the N20 sources. These data strongly suggest a postcentral origin of the P22 SEP component in Brodmann area 1 and render a major precentral contribution to the earliest stages of processing from the primary motor cortex less likely.
Collapse
Affiliation(s)
- Ulf Baumgärtner
- Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
26
|
Conte A, Modugno N, Lena F, Dispenza S, Gandolfi B, Iezzi E, Fabbrini G, Berardelli A. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease. Brain 2010; 133:2656-63. [PMID: 20802206 DOI: 10.1093/brain/awq191] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Antonella Conte
- Department of Neurological Sciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manipulative Physiol Ther 2010; 33:178-88. [PMID: 20350670 DOI: 10.1016/j.jmpt.2010.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/09/2009] [Accepted: 05/10/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a session of spinal manipulation of dysfunctional cervical joints. METHOD Dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was used in 13 subjects with a history of reoccurring neck stiffness and/or neck pain but no acute symptoms at the time of the study. Somatosensory evoked potentials were recorded after median and ulnar nerve stimulation at the wrist (1 millisecond square wave pulse, 2.47 Hz, 1 x motor threshold). The SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25, and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. RESULTS There was a significant decrease in the MU/M + U ratio for the cortical P22-N30 SEP component after chiropractic manipulation of the cervical spine. The P22-N30 cortical ratio change appears to be due to an increased ability to suppress the dual input as there was also a significant decrease in the amplitude of the MU recordings for the same cortical SEP peak (P22-N30) after the manipulations. No changes were observed after a control intervention. CONCLUSION This study suggests that cervical spine manipulation may alter cortical integration of dual somatosensory input. These findings may help to elucidate the mechanisms responsible for the effective relief of pain and restoration of functional ability documented after spinal manipulation treatment.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Director of Research, New Zealand College of Chiropractic, Auckland, New Zealand.
| | | |
Collapse
|
28
|
Tan Ü. Association of Serum Testosterone Levels with Latencies of Somatosensory Evoked Potentials From Right and Left Posterior Tibial Nerves in Right-Handed Young Male and Female Subjects. Int J Neurosci 2009. [DOI: 10.3109/00207459109080644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Costa J, Valls-Solé J, Valldeoriola F, Rumià J. Subcortical Interactions Between Somatosensory Stimuli of Different Modalities and Their Temporal Profile. J Neurophysiol 2008; 100:1610-21. [DOI: 10.1152/jn.90412.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between inputs of different sensory modality occur along the sensory pathway, including the thalamus. However, the temporal profile of such interaction has not been fully studied. In eight patients who had been implanted an intrathalamic electrode for deep brain stimulation as symptomatic treatment of tremor, we investigated the interactions between mechanical taps and electrical nerve stimuli. Somatosensory evoked potentials (SEPs) were recorded from Erb's point, cervical spinal cord, nucleus ventrointermedialis of the thalamus, and parietal cortex. A handheld electronic reflex hammer was used to deliver a mechanical tap to the skin overlying the first dorsal interosseous muscle and to trigger an ipsilateral digital median nerve electrical stimulus time-locked to the mechanical tap with a variable delay of 0 to 50 ms. There were significant time-dependent interactions between the two sensory volleys at the subcortical level. Thalamic SEPs were decreased in amplitude at interstimulus intervals (ISIs) from 10 to 40 ms with maximum effect at 20 ms (−42.8 ± 10.5%; P < 0.001). A similar decrease was also seen in the number and frequency of the high-frequency components of thalamic SEPs (−25 ± 4%). A smaller reduction (−18.1 ± 5.8%; P < 0.001) was present in upper cervical response at ISI = 20 ms. There were no changes in peripheral responses. Cortical SEPs were almost completely absent in some subjects at ISIs from 20 to 50 ms. There were no changes in SEP latencies. Our results indicate that significant time-dependent interactions between sensory volleys occur at the subcortical level. These observations provide further insight into the physiological mechanisms underlying afferent gating between sensory volleys of different modality.
Collapse
|
30
|
Fukuda H, Sonoo M, Ishibashi M. Muscle afferent contributions to tibial nerve somatosensory evoked potentials investigated using knee stimulations. Clin Neurophysiol 2007; 118:2104-11. [PMID: 17646132 DOI: 10.1016/j.clinph.2007.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 05/21/2007] [Accepted: 06/19/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the contribution of muscle afferents to tibial nerve somatosensory evoked potentials (SEPs). METHODS The left tibial nerve was stimulated at the knee and ankle in eight normal subjects. We tried to selectively stimulate Ia fibers from the calf muscles at the popliteal fossa by subtly changing the stimulation site while monitoring the H-waves of the calf muscles and sensory events. RESULTS Selective or predominant Ia stimulation at the knee was achieved in seven subjects, and evoked a significantly smaller first cortical component (labeled as P38 for both ankle and knee stimulations) than that evoked by ankle stimulation or by mixed stimulation of the foot branch and muscle afferents at the knee. The P38 following mixed stimulation at the knee was smaller than that following ankle stimulation in six out of eight subjects, which must be due to a partial gating mechanism and also indicates that calf Ia afferent SEPs are not extremely large. CONCLUSIONS Physiologically important muscle afferents from the large calf muscles evoked rather small cortical components. SIGNIFICANCE It seems reasonable to infer that the contribution of muscle afferents from the small intrinsic foot muscles to routine tibial nerve SEPs following ankle stimulation is even smaller.
Collapse
Affiliation(s)
- Hiroyuki Fukuda
- Department of Internal Medicine, University Hospital, Mizonokuchi, Teikyo University School of Medicine, 3-8-3 Mizonokuchi, Kawasaki, Japan
| | | | | |
Collapse
|
31
|
Torquati K, Franciotti R, Della Penna S, Babiloni C, Rossini PM, Romani GL, Pizzella V. Conditioning transcutaneous electrical nerve stimulation induces delayed gating effects on cortical response: A magnetoencephalographic study. Neuroimage 2007; 35:1578-85. [PMID: 17382562 DOI: 10.1016/j.neuroimage.2006.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/15/2006] [Accepted: 12/21/2006] [Indexed: 11/29/2022] Open
Abstract
The present study was undertaken to investigate after-effects of 7 Hz non-painful prolonged stimulation of the median nerve on somatosensory-evoked fields (SEFs). The working hypothesis that conditioning peripheral stimulations might produce delayed interfering ("gating") effects on the response of somatosensory cortex to test stimuli was evaluated. In the control condition, electrical thumb stimulation induced SEFs in ten subjects. In the experimental protocol, a conditioning median nerve stimulation at wrist preceded 6 electrical thumb stimulations. Equivalent current dipoles fitting SEFs modeled responses of contralateral primary area (SI) and bilateral secondary somatosensory areas (SII) following control and experimental conditions. Compared to the control condition, conditioning stimulation induced no amplitude modulation of SI response at the initial stimulus-related peak (20 ms). In contrast, later response from SI (35 ms) and response from SII were significantly weakened in amplitude. Gradual but fast recovery towards control amplitude levels was observed for the response from SI-P35, while a slightly slower cycle was featured from SII. These findings point to a delayed "gating" effect on the synchronization of somatosensory cortex after peripheral conditioning stimulations. This effect was found to be more lasting in SII area, as a possible reflection of its integrative role in sensory processing.
Collapse
Affiliation(s)
- K Torquati
- Dipartimento di Scienze Cliniche e Bioimmagini and ITAB, Istituto di Tecnologie Avanzate Biomediche, Università G. D'Annunzio, Chieti - Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mauguière F, Fischer C. Potenziali evocati in neurologia: risposte normali. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Hauck M, Baumgärtner U, Hille E, Hille S, Lorenz J, Quante M. Evidence for early activation of primary motor cortex and SMA after electrical lower limb stimulation using EEG source reconstruction. Brain Res 2006; 1125:17-25. [PMID: 17141203 DOI: 10.1016/j.brainres.2006.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 12/29/2022]
Abstract
Compared to median nerve somatosensory evoked potentials (SEP), less is known about activity evoked by nerve stimulation of the lower limb. To understand the mechanisms and the physiology of sensor- and motor control it is useful to investigate the sensorimotor functions as revealed by a standardized functional status. Therefore, we investigated SEPs of the lower limb in 6 healthy male volunteers. For each side, tibial and peroneal nerves were stimulated transcutaneously at the fossa poplitea. The tibial nerves were also stimulated further distally at the ankle joint. Source localization was applied to 64-EEG-channel data of the SEPs. In contrast to somatosensory areas, which are activated after median nerve stimulation, we found dipoles adjacent to motor areas near Brodmann area 4 (BA 4) for SEP components P 32/40 and P 54/60 and near the supplementary motor area (SMA) for the N 75/83 component. These sources could reliably be distinguished for each individual subject as well as for the grand mean data set. Our data show that afferent projections from the lower limb mainly reach primary motor areas (BA 4) and only subsequently, with a delay of 40 ms, higher order motor areas such as SMA. We conclude that a focused view on SEP of the lower limb could be a useful tool to investigate pathological states in motor control or peripheral deafferentiation.
Collapse
Affiliation(s)
- Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Haavik Taylor H, Murphy BA. Altered cortical integration of dual somatosensory input following the cessation of a 20 min period of repetitive muscle activity. Exp Brain Res 2006; 178:488-98. [PMID: 17136532 DOI: 10.1007/s00221-006-0755-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 10/08/2006] [Indexed: 11/30/2022]
Abstract
The adult human central nervous system (CNS) retains its ability to reorganize itself in response to altered afferent input. Intracortical inhibition is thought to play an important role in central motor reorganization. However, the mechanisms responsible for altered cortical sensory maps remain more elusive. The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a period of repetitive contractions. To achieve this, the dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was utilized in 14 subjects. SEPs were recorded following median and ulnar nerve stimulation at the wrist (1 ms square wave pulse, 2.47 Hz, 1x motor threshold). SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25 and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. There was a significant increase in the MU/M + U ratio for both cortical SEP components following the 20 min repetitive contraction task, i.e. the N20-P25 complex, and the P22-N30 SEP complex. These cortical ratio changes appear to be due to a reduced ability to suppress the dual input, as there was also a significant increase in the amplitude of the MU recordings for the same two cortical SEP peaks (N20-P25 and P22-N30) following the typing task. No changes were observed following a control intervention. The N20 (S1) changes may reflect the mechanism responsible for altering the boundaries of cortical sensory maps, changing the way the CNS perceives and processes information from adjacent body parts. The N30 changes may be related to the intracortical inhibitory changes shown previously with both single and paired pulse TMS. These findings may have implications for understanding the role of the cortex in the initiation of overuse injuries.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Human Neurophysiology and Rehabilitation Laboratory, Department of Sport and Exercise Science, Tamaki Campus, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
35
|
NAKAJIMA TSUYOSHI. CHANGES IN SOMATOSENSORY EVOKED POTENTIALS AND HOFFMANN REFLEXES DURING FAST ISOMETRIC CONTRACTION OF FOOT PLANTARFLEXOR IN HUMANS. Percept Mot Skills 2006. [DOI: 10.2466/pms.103.7.847-860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Tamburin S, Fiaschi A, Andreoli A, Marani S, Zanette G. Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Exp Brain Res 2005; 167:362-9. [PMID: 16078031 DOI: 10.1007/s00221-005-0041-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/26/2005] [Indexed: 12/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used to study sensorimotor integration in humans non-invasively. Motor excitability has been found to be inhibited when afferent stimuli are given to a peripheral nerve and precede TMS at interstimulus intervals (ISIs) of 20-50 ms. This phenomenon has been referred to as short-latency afferent inhibition (SAI). To better understand the functional meaning of these phenomena, we examined the effect of the size of the receptive field on SAI to cutaneous afferents in upper-limb sensorimotor areas in humans. We examined the effect of the stimulation of the isolated right first (D1), second (D2) and third finger (D3), the right second and third finger together (D23) and the right first three fingers together (D123) on the amplitude of motor evoked potentials (MEPs) to TMS in hand and forearm muscles. We examined the right abductor pollicis brevis (APB), first dorsal interosseous (FDI), extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles. Digital stimulation preceded TMS at ISIs of 20-50 ms. The effect of D2 stimulation was MEP inhibition (SAI), which was more marked and consistent in APB and FDI muscles than in ECR and FCR muscles. Similarly, D1 and D3 stimulation caused MEP reduction, while no MEP enhancement could be found to single finger stimulation. In contrast, D123 stimulation induced less effective SAI in upper-limb muscles. MEP potentiation was recorded in some muscles to D123 stimulation. A significant difference between D2 and D123 stimulation was found in APB (ISIs = 30-50 ms) and FDI (ISIs = 40-50 ms) muscles, but not in forearm muscles. The effect to D23stimulation on MEP amplitude was intermediate between those to D2 and D123 stimulation. Our data suggest that motor excitability to cutaneous afferents may be influenced by the size of the receptive fields, this effect being the result of increasing convergence between hand afferents in the somatosensory system. These phenomena appear to be topographically arranged across the representation of upper-limb muscles. These findings may help to understand the functional significance of SAI in normal physiology and pathophysiology.
Collapse
Affiliation(s)
- Stefano Tamburin
- Department of Neurological Sciences and Vision, Section of Neurological Rehabilitation, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
37
|
Truini A, Rossi P, Galeotti F, Romaniello A, Virtuoso M, De Lena C, Leandri M, Cruccu G. Excitability of the Adelta nociceptive pathways as assessed by the recovery cycle of laser evoked potentials in humans. Exp Brain Res 2004; 155:120-3. [PMID: 15064893 DOI: 10.1007/s00221-003-1785-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
To investigate the excitability of Adelta nociceptive pathways and the nature of the vertex laser evoked potentials (LEPs), we studied the recovery cycle of the P2-LEP component and compared it with that of the P200 of the somatosensory evoked potential (SEP). Using two identical CO(2)-laser stimulators, we delivered paired stimuli to two adjacent skin spots on the hand at interstimulus intervals ranging from 250 ms to 2 s. The test P2-LEP was strongly inhibited at the 250-ms interstimulus interval ( P<0.01) and progressively recovered by the 2-s interval. The P200-SEP, after paired stimuli to the median nerve, showed a time course even slower than the P2-LEP ( P<0.01). Besides providing the LEP recovery curve in normal subjects, our findings indicate that the P2-LEP relays through a number of synapses similar to (or even lower than) that for the P200-SEP, thus lending further support to the view that the nociceptive P2-LEP is not an endogenous potential equivalent to the P300.
Collapse
Affiliation(s)
- A Truini
- Department of Neurological Sciences, University "La Sapienza", Viale Università 30, 00185, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tinazzi M, Rosso T, Zanette G, Fiaschi A, Aglioti SM. Rapid modulation of cortical proprioceptive activity induced by transient cutaneous deafferentation: neurophysiological evidence of short-term plasticity across different somatosensory modalities in humans. Eur J Neurosci 2003; 18:3053-60. [PMID: 14656300 DOI: 10.1111/j.1460-9568.2003.03043.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single cell recording in non-human primates shows plastic changes of cortical somatic representations across different types of somatic inputs originating from the same peripheral territory. In humans, muscle afferents from first dorsal interosseus are supplied by the ulnar nerve while the cutaneous territory overlying this muscle is supplied by the radial nerve. This peculiar anatomical nervous distribution allowed us to devise an experimental model which provided a unique opportunity to assess, in humans with a non-invasive technique, the functional relationships between cutaneous and muscle afferent inputs originating from the same peripheral territory. We recorded spinal, brainstem and cortical somatosensory potentials evoked by stimulation of muscle afferents of the right first dorsal interosseus before, during and after anaesthetic block of the sensitive branch of the ipsilateral radial nerve. Amplitude of parietal N20 and P27 and frontal N30 somatosensory evoked potential components showed an increase of amplitudes with more profound anaesthesia. Amplitudes returned to pre-anaesthetic values several minutes after anaesthesia. By contrast, spinal N13 and brainstem P14 potentials did not change throughout the experiment. Results show, for the first time in humans, that a transient cutaneous deafferentation may induce rapid modulation of cortical activity evoked by stimulation of muscle afferents originating in the anaesthetic territory.
Collapse
Affiliation(s)
- Michele Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa, Università di Verona, Italy
| | | | | | | | | |
Collapse
|
39
|
Hasegawa A, Yamada T, Saito T, Fuchigami T, Onishi H, Fujii M. The interaction of somatosensory evoked potentials between mixed-sensory nerves and sensory-sensory nerves. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2001; 32:197-204. [PMID: 11682814 DOI: 10.1177/155005940103200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interactions between two different nerves occur by occlusion or inhibition when two nerves share the synaptic connections. In our previous study, we have demonstrated that posterior tibial nerve and peroneal nerve sensory inputs interact with each other, i.e., preceding stimulus to one nerve suppresses the somatosensory evoked potential (SEP) of the other nerve when two stimuli are delivered in close sequence. The course of suppression follows two phases; the first one occurring at short interstimulus intervals (ISIs) of the two nerves less than 10 msec, and the second one being at around 30 msec ISI after partial recovery following the first suppression phase. In that study, we have postulated that the second phase suppression was equivalent for the movement induced "gating" mechanism. In this study, the interactions of mixed nerve (posterior tibial) and sensory nerve (sural), and also sensory (sural) and sensory (saphenous) nerves were examined. We found that the mixed nerve (posterior tibial) exerted similar dual phases of suppression (as was seen in posterior tibial--peroneal nerve study) on to the sural nerve SEP, but the reverse was not true. Also the sensory and sensory nerve interactions were not mutually equal; the sural nerve stimulation caused two phases suppression but the reverse condition did not show significant suppression. The above findings suggest (1) interference input from the sensory nerve to the mixed nerve is much weaker than the reverse condition, and (2) sensory and sensory nerves interactions occur but two nerves' interference inputs are not necessarily equal and one could dominant the other.
Collapse
Affiliation(s)
- A Hasegawa
- Division of Clinical Electrophysiology, Department of Neurology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
40
|
Misiaszek JE, Brooke JD. Vibration-induced inhibition of the early components of the tibial nerve somatosensory evoked potential is mediated at a spinal synapse. Clin Neurophysiol 2001; 112:324-9. [PMID: 11165537 DOI: 10.1016/s1388-2457(00)00520-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate whether afferent-induced suppression of cortical somatosensory evoked potentials (SEPs) occurs at a spinal site along the transmission route of afferent signals from the tibial nerve to the primary somatosensory cortex. METHODS Evoked potentials were recorded at 4 points (sciatic nerve, L5, C1, and cortex) along the path of transmission following electrical stimulation of the tibial nerve in halothane-anesthetized cats. The amplitudes of evoked potentials sampled during vibration of quadriceps were compared to evoked potentials sampled without the vibration. RESULTS The spinal SEP recorded at C1 and the cortical SEP were both substantially reduced by patellar tendon vibration. The L5 spinal SEP and the sciatic nerve potential were unaffected. Vibration of quadriceps did not influence the latency of the evoked potentials. CONCLUSIONS These results indicate that afferent-induced suppression of the initial complex of the SEP can be mediated at a spinal synapse.
Collapse
Affiliation(s)
- J E Misiaszek
- Department of Occupational Therapy, 2-64 Corbett Hall, University of Alberta, Alberta T6G 2G4, Edmonton, Canada.
| | | |
Collapse
|
41
|
Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 2000; 123 ( Pt 1):42-50. [PMID: 10611119 DOI: 10.1093/brain/123.1.42] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several observations suggest impaired central sensory integration in dystonia. We studied median and ulnar nerve somatosensory evoked potentials (SEPs) in 10 patients who had dystonia involving at least one upper limb (six had generalized, two had segmental and two had focal dystonia) and in 10 normal subjects. We compared the amplitude of spinal N13, brainstem P14, parietal N20 and P27 and frontal N30 SEPs obtained by stimulating the median and ulnar nerves simultaneously (MU), the amplitude value being obtained from the arithmetic sum of the SEPs elicited by stimulating the same nerves separately (M + U). Throughout the somatosensory system, the MU : (M + U) ratio indicates the interaction between afferent inputs from the two peripheral nerves. No significant difference was found between SEP amplitudes and latencies for individually stimulated median and ulnar nerves in dystonic patients and normal subjects, but recordings in patients yielded a significantly higher percentage ratio [MU : (M + U)x100] for spinal N13 brainstem P14 and cortical N20, P27 and N30 components. The SEP ratio of central components obtained in response to stimulation of the digital nerves of the third and fifth fingers was also higher in patients than in controls but the difference did not reach a significant level. The possible contribution of subliminal activation was ruled out by recording the ratio of SEPs in six normal subjects during voluntary contraction. This voluntary contraction did not change the ratio of SEP suppression. These findings suggest that the inhibitory integration of afferent inputs, mainly proprioceptive inputs, coming from adjacent body parts is abnormal in dystonia. This inefficient integration, which is probably due to altered surrounding inhibition, could give rise to an abnormal motor output and might therefore contribute to the motor impairment present in dystonia.
Collapse
Affiliation(s)
- M Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sez. di Neurologia Riabilitativa, Verona, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Fujita Y, Yamada T, Inoue K, Sato A, Katayama M, Ofuji A, Fujita H, Yeh M. Origin of the "N10" stationary-field potential after median nerve stimulation. J Clin Neurophysiol 1999; 16:69-76. [PMID: 10082094 DOI: 10.1097/00004691-199901000-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The scalp far-field potentials after median nerve stimulation at the wrist consist of P9, P11, P13, and P14 positive components. Earlier, Emerson et al. (1984) identified the "N10" negative potential in-between the P9 and P11 and claimed that this was not merely a passive return to the baseline after the P9 positive deflection but a distinct component reflecting a proximal brachial plexus volley. They thought N10 was a far-field potential having widespread distribution with a fixed latency. In this study we found that N10 was of higher amplitude after median nerve stimulation at the elbow than after stimulation at the wrist. Indeed the N10 latency was fixed from the lower anterior neck to the scalp, and its amplitude was maximum at the anterior lower neck. The latency of N10 was about 0.3 milliseconds longer than the Erb's potential and 0.15 milliseconds longer than the potential recorded from the lateral neck on the side of stimulation. The N10 amplitude increased in parallel with increased stimulus intensity. In order to explore the origin of the N10 stationary field potential, we designed a paired stimuli paradigm applied to the wrist (S1) and to the elbow (S2). The interstimulus interval between S and S2 was adjusted so that the timing of S2 was immediately after the traveling impulse produced by the S1 stimulus as it passed through the S2 stimulus site. This technique allowed stimulation of the anterior interosseous nerve selectively at the elbow while the median nerve originating from the wrist was undergoing refractory period. The response of (S1 + S2) - S1 showed only the N10 with absence of cervical and cortical responses, implying that N10 was activated, predominantly by the interosseous nerve, i.e., an antidromic motor volley, when the median nerve was stimulated at the elbow.
Collapse
Affiliation(s)
- Y Fujita
- Department of Neurology, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Baumgärtner U, Vogel H, Ellrich J, Gawehn J, Stoeter P, Treede RD. Brain electrical source analysis of primary cortical components of the tibial nerve somatosensory evoked potential using regional sources. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 108:588-99. [PMID: 9872431 DOI: 10.1016/s0168-5597(98)00040-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tibial nerve somatosensory evoked potentials (SEPs) show higher amplitudes ipsilateral to the side of stimulation, whereas subdural recordings revealed a source in the foot area of the contralateral hemisphere. We now investigated this paradoxical lateralization by performing a brain electrical source analysis in the P40 time window (34-46 ms). The tibial nerve was stimulated behind the ankle (8 subjects). On each side, 2048 stimuli were applied twice. SEPs were recorded using 32 magnetic resonance imaging (MRI)-verified electrode positions (bandpass 0.5-500 Hz). In each case, the P40 amplitude was higher ipsilaterally (0.45 +/- 0.14 microV) than contralaterally (-0.49 +/- 0.16 microV). The best fitting regional source, however, was always located in the contralateral hemisphere with a mean distance of 8.2 +/- 4.3 mm from the midline. The positivity pointed ipsilaterally shifting from a frontal orientation (P37) to a parietal direction (P40). The P40 dipole moment was 2.5 times stronger than the dipole moment of P37, which makes P40 most prominent in EEG recordings. However, with its oblique dipole orientation compared to the tangential P37 dipole, it is systematically underestimated in MEG. Dipole orientations explained interindividual variability of scalp potential distribution. SEP amplitudes were smaller when generated in the dominant (left) hemisphere. This is explained by deeper located sources (5.4 +/- 1.6 mm) with a more tangential orientation (delta theta = 17.5 +/- 2.3 degrees) in the left hemisphere.
Collapse
Affiliation(s)
- U Baumgärtner
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Rossi A, Decchi B, Groccia V, Della Volpe R, Spidalieri R. Interactions between nociceptive and non-nociceptive afferent projections to cerebral cortex in humans. Neurosci Lett 1998; 248:155-8. [PMID: 9654332 DOI: 10.1016/s0304-3940(98)00354-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effect of a tonic discharge of muscle nociceptive afferents on somatosensory evoked potentials (SEPs) in humans in response to stimulation of non-nociceptive afferents arising from the same muscle. Conditioning nociceptive muscle stimulation was achieved by local injection of 50 mg levo-ascorbic acid (in a volume of 0.3 ml) in the body of the extensor digitorum brevis muscle (EDB). The test stimulus for SEPs was an electrical pulse applied to the EDB nerve at an intensity below the motor threshold. The main finding was that tonic muscle nociceptive stimulation strongly depressed the middle-latency P60-N75 complex without modifying the size of the early P40-N50 complex of SEPs. Depression of the P60-N75 complex was correlated with the pain-induced loss of proprioception of the foot, making it plausible that this cortical complex reflects neuronal processes leading to perception.
Collapse
Affiliation(s)
- A Rossi
- Laboratory of Human Neurophysiology, Institute of Neurological Sciences, University of Siena, Italy.
| | | | | | | | | |
Collapse
|
45
|
Naka D, Kakigi R, Koyama S, Xiang J, Suzuki H. Effects of tactile interference stimulation on somatosensory evoked magnetic fields following tibial nerve stimulation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 109:168-77. [PMID: 9741808 DOI: 10.1016/s0924-980x(97)00080-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of interfering tactile stimulation applied to the foot ipsilateral and contralateral to the stimulation on somatosensory evoked magnetic fields (SEFs) following tibial nerve stimulation at the ankle. Equivalent current dipoles (ECDs) of all 4 components, 1M-4M, in all sessions were estimated to be very close each other, around the foot area of the primary sensory cortex (SI). The 1M, 2M and 4M components were significantly reduced in amplitude by the ipsilateral-foot interference, and we consider that this phenomenon is due mainly to 'saturation' of the neurons in area 3b of the SI. In contrast, the 3M component was significantly enhanced in amplitude by the contralateral-foot interference. We suspect that this result was due to the effects of neuronal activities in areas 2, 5 and/or 7, which receive inputs from both sides of the body, i.e. to 'bilateral function'. Considering the various types of interference effects on SEFs and somatosensory evoked potentials (SEPs) observed in not only the present, but also in the previous studies, we conclude that both SEFs and SEPs following tibial nerve stimulation are generated mainly by ascending signals mediated by cutaneous fibers of the peripheral nerves rather than the muscle afferents.
Collapse
Affiliation(s)
- D Naka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan
| | | | | | | | | |
Collapse
|
46
|
Xiang J, Kakigi R, Hoshiyama M, Kaneoke Y, Naka D, Takeshima Y, Koyama S. Somatosensory evoked magnetic fields and potentials following passive toe movement in humans. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:393-401. [PMID: 9344075 DOI: 10.1016/s0168-5597(97)00058-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The somatosensory evoked magnetic fields (SEFs) and evoked potentials (SEPs) following passive toe movement were studied in 10 normal subjects. Five main components were identified in SEFs recorded around the vertex around the foot area of the primary sensory cortex (SI). The first and second components, 1M and 2M, were identified at approximately 35 and 46 ms. Equivalent current dipoles (ECDs) of both 1M and 2M were estimated around SI in the hemisphere contralateral to the movement toe, and were probably generated in area 3a or area 2, which mainly receive inputs ascending through muscle and joint afferents. The large inter-individual difference of 1M and 2M in terms of ECD orientation was probably due to a large anatomical variance of the foot area of SI. The third and fourth components, 3M and 4M, were identified at approximately 62 ms and 87 ms, respectively. They appeared to be a single large long-duration component with two peaks. Since the 3M and 4M components were significantly larger than the 1M and 2M components in amplitude and their ECD location was significantly superior to that of 1M and 2M, we suspected that they were generated in different sites from those of 1M and 2M, probably area 3b or area 4. Four components, 1E, 2E, 3E and 4E, were identified in SEPs, which appeared to correspond to 1M, 2M, 3M and 4M, respectively. The variation observed in the scalp distribution of the primary component, 1E, could be accounted for by the variation of the orientation of ECD of the 1M component. There was a large difference in the waveform of the long-latency component (longer than 100 ms) between SEFs and SEPs. The 5E of SEPs was a large amplitude component, but the 5M of SEFs was small or absent. We speculate that this long-latency component was generated by multiple generators.
Collapse
Affiliation(s)
- J Xiang
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Georgesco M, Salerno A, Camu W. Somatosensory evoked potentials elicited by stimulation of lower-limb nerves in amyotrophic lateral sclerosis. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:333-42. [PMID: 9246071 DOI: 10.1016/s0168-5597(97)00018-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine lower limb somatosensory modifications in amyotrophic lateral sclerosis (ALS), we studied somatosensory evoked potentials (SEPs) elicited by stimulation of tibial posterior nerves (TP), sural nerves (SN), saphenous internous nerves (SA), and medial plantar nerves (PL) of both limbs in 24 ALS patients, and compared the results with those from 17 normal subjects. Responses were recorded according to the international 10-20 system. Normal sensory conduction velocities of SN, SA and PL and H reflexes in soleus muscles were prerequisites for patient inclusion in this study. The results showed marked alterations in SEPs cortical components of all lower limb nerves, which could be related to abnormal sensory transmission (after spinal N22), or cortical abnormalities. We put forward the hypothesis of impairment of pyramidal control of the sensory system and Clark's column involvement to explain such anomalies. It was concluded that SEPs abnormalities in the lower limbs are a common feature in ALS.
Collapse
Affiliation(s)
- M Georgesco
- Laboratoire d'Electromyographie, Hôpital Gui de Chauliac, Montpellier, France
| | | | | |
Collapse
|
48
|
Mima T, Terada K, Ikeda A, Fukuyama H, Takigawa T, Kimura J, Shibasaki H. Afferent mechanism of cortical myoclonus studied by proprioception-related SEPs. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:51-9. [PMID: 9076253 DOI: 10.1016/s0168-5597(96)96089-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proprioception-related somatosensory evoked potentials (SEPs) to passive flexion movement of the middle finger at proximal interphalangeal joint were recorded in 7 patients with myoclonus of cortical origin who demonstrated enlarged electrical SEPs (giant SEPs). In 3 out of the 7 patients, the proprioception-related SEPs were also enlarged. The remaining 4 patients showed giant electrical SEPs without enhancement of proprioception-related SEPs. Long loop electromyographic response was recorded during the resting condition in all of the 3 patients with enlarged proprioception-related SEPs. We have previously reported that proprioception-related SEPs are mainly generated by muscle afferent inputs, though electrical SEPs are thought to reflect mostly cutaneous inputs with some contribution from muscle afferents. Therefore, it is concluded that hyperexcitability of the sensorimotor cortex in cortical myoclonus is modality-specific. Cortical excitability is exaggerated to both cutaneous and deep receptor inputs in some patients, but only to cutaneous input in others.
Collapse
Affiliation(s)
- T Mima
- Department of Brain Pathophysiology, Kyoto University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Ertekin C, Mungan B. Sacral spinal cord and root potentials evoked by the stimulation of the dorsal nerve of penis and cord conduction delay for the bulbocavernosus reflex. Neurourol Urodyn 1993; 12:9-22. [PMID: 8481731 DOI: 10.1002/nau.1930120103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Segmental spinal cord and root potentials in response to stimulations of the dorsal nerve of penis, tibial nerve, and the sural nerve were epidurally recorded in normal subjects. EMG responses from the bulbocavernosus (BC) and the various leg muscles were also recorded in response to bipolar stimulations by the same epidural needle electrodes of the sacral cord and lumbosacral roots. The afferent conduction velocity from the penis to Th12-L1 intervertebral level was about 40 m/sec on the average, which is significantly slower than those obtained by the stimulation of the mixed and cutaneous nerves at the lower limb. The latency of the motor responses of the BC muscle from Th12-L1 spine levels were found comparatively longer than those of thigh muscles on maximal epidural stimulation in spite of the shorter distances to the BC muscle. The central conduction delay within the sacral cord of the bulbocavernosus reflex was calculated and found to be about 8.2 msec, while the central conduction time was about 1.1 msec for the Soleus-H-Reflex. These findings may suggest that there may be about 5-6 synapsis necessary for the first component of the bulbocavernosus reflex, though some faster oligosynaptic cord linkage may also exist.
Collapse
Affiliation(s)
- C Ertekin
- Department of Neurology, Medical School Hospital, Bornova, Turkey
| | | |
Collapse
|
50
|
Yamada T, Saito T, Matsue Y, Honda Y, Fuchigami T, Fujii M, Ross M. The influence of interfering input from the peroneal nerve on tibial-nerve somatosensory evoked potential. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1992; 84:492-8. [PMID: 1280195 DOI: 10.1016/0168-5597(92)90038-d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using a conditioning-test paradigm, we studied the recovery function of tibial nerve somatosensory evoked potentials (SEPs) conditioned by preceding peroneal nerve stimulation. The inter-stimulus intervals (ISIs) ranged from 0 to 400 msec, where 0 msec indicated simultaneous arrival of tibial and peroneal nerve volleys at the L1 spine. The recovery curve was W-shaped, showing two peaks of SEP suppression, maximum at 6 msec ISI (1st phase) and 50-75 ISI msec (2nd phase). In the 1st phase suppression, we found distinct differences in wave forms between 0-2 msec ISI and 4-6 msec ISI. At 0-2 msec ISI, P40-N50-P60 amplitude decreased and latencies shortened, while P31 and N35 were unchanged. At 4-6 msec ISI, all peaks, possibly excluding P31, were markedly depressed. We attribute the former change to an "occlusive effect" and the latter to an "inhibitory effect," each mediated via a central synaptic network between the two nerves. The attenuation of the 2nd but not the 1st phase suppression by peroneal nerve block distal to the stimulating electrodes provided evidence that the 2nd phase suppression resulted primarily from interfering afferent signals generated by peroneal nerve peripheral receptors, activated by foot movement.
Collapse
Affiliation(s)
- T Yamada
- Department of Neurology, University of Iowa, College of Medicine, Iowa City 52242
| | | | | | | | | | | | | |
Collapse
|