1
|
Sen K, Harrar D, Pariseau N, Tucker K, Keenan J, Zhang A, Gropman A. Seizure Characteristics and EEG Features in Intoxication Type and Energy Deficiency Neurometabolic Disorders in the Pediatric Intensive Care Unit: Single-Center Experience Over 10 Years. Neurocrit Care 2024:10.1007/s12028-024-02073-4. [PMID: 39138714 DOI: 10.1007/s12028-024-02073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Acute metabolic crises in inborn errors of metabolism (such as urea cycle disorders, organic acidemia, maple syrup urine disease, and mitochondrial disorders) are neurological emergencies requiring management in the pediatric intensive care unit (PICU). There is a paucity of data pertaining to electroencephalograms (EEG) characteristics in this cohort. We hypothesized that the incidence of background abnormalities and seizures in this cohort would be high. Neuromonitoring data from our center's PICU over 10 years are presented in this article. METHODS Data were collected by retrospective chart review for patients with the aforementioned disorders who were admitted to the PICU at our institution because of metabolic/neurologic symptoms from 2008 to 2018. Descriptive statistics (χ2 test or Fisher's exact test) were used to study the association between EEG parameters and outcomes. RESULTS Our cohort included 40 unique patients (8 with urea cycle disorder, 7 with organic acidemia, 3 with maple syrup urine disease, and 22 with mitochondrial disease) with 153 admissions. Presenting symptoms included altered mentation (36%), seizures (41%), focal weakness (5%), and emesis (28%). Continuous EEG was ordered in 34% (n = 52) of admissions. Twenty-three admissions were complicated by seizures, including eight manifesting as status epilepticus (seven nonconvulsive and one convulsive). Asymmetry and focal slowing on EEG were associated with seizures. Moderate background slowing or worse was noted in 75% of EEGs. Among those patients monitored on EEG, 4 (8%) died, 3 (6%) experienced a worsening of their Pediatric Cerebral Performance Category (PCPC) score as compared to admission, and 44 (86%) had no change (or improvement) in their PCPC score during admission. CONCLUSIONS This study shows a high incidence of clinical and subclinical seizures during metabolic crisis in patients with inborn errors of metabolism. EEG background features were associated with risk of seizures as well as discharge outcomes. This is the largest study to date to investigate EEG features and risk of seizures in patients with neurometabolic disorders admitted to the PICU. These data may be used to inform neuromonitoring protocols to improve mortality and morbidity in inborn errors of metabolism.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | - Dana Harrar
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Nicole Pariseau
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
- Division of Pediatric Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Karis Tucker
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Julia Keenan
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Anqing Zhang
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| |
Collapse
|
2
|
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem 2022; 636:114343. [PMID: 34637785 PMCID: PMC8671367 DOI: 10.1016/j.ab.2021.114343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States
| | - Matthew Whitehead
- Division of Radiology, Children's National Hospital, Washington D.C., United States
| | | | - Ljubica Caldovic
- Childrens' Research Institute, Children's National Hospital, Washington D.C., United States
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States.
| |
Collapse
|
3
|
McGowan M, Ferreira C, Whitehead M, Basu SK, Chang T, Gropman A. The Application of Neurodiagnostic Studies to Inform the Acute Management of a Newborn Presenting With Sarbamoyl Shosphate Synthetase 1 Deficiency. Child Neurol Open 2021; 8:2329048X20985179. [PMID: 33644249 PMCID: PMC7841664 DOI: 10.1177/2329048x20985179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
Neonatal-onset urea cycle disorders (UCDs) may result in hyperammonemic (HA) encephalopathy presenting with several neurologic sequelae including seizures, coma, and death. However, no recommendations are given in how and when neurodiagnostic studies should be used to screen or assess for these neurologic complications. We present a case of carbamoyl phosphate synthetase 1 (CPS1) deficiency in a newborn female in which electroencephalogram monitoring to assess encephalopathy and seizures, and magnetic resonance imaging measurements of brain metabolites were used to guide care during her hyperammonemic crisis. Her neurologic course and response to treatment characterizes the significant neurologic impact of HA encephalopathy. Our group herein proposes a clinical neurodiagnostic pathway for managing acute HA encephalopathy.
Collapse
Affiliation(s)
- Meaghan McGowan
- University of Illinois College of Medicine, Chicago, IL,
USA
| | - Carlos Ferreira
- Medical Genomics and Metabolic Genetics Branch, National
Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Matthew Whitehead
- Neuroradiology, Children’s National Hospital, George
Washington University School of Medicine, Washington, DC, USA
| | - Sudeepta K. Basu
- Neonatology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Andrea Gropman
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| |
Collapse
|
4
|
Pontoizeau C, Roda C, Arnoux JB, Vignolo-Diard P, Brassier A, Habarou F, Barbier V, Grisel C, Abi-Warde MT, Boddaert N, Kuster A, Servais A, Kaminska A, Hennequin C, Dupic L, Lesage F, Touati G, Valayannopoulos V, Chadefaux-Vekemans B, Oualha M, Eisermann M, Ottolenghi C, de Lonlay P. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders. Mol Genet Metab 2020; 130:110-117. [PMID: 32273051 DOI: 10.1016/j.ymgme.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE We aimed to identify prognostic factors for survival and long-term intellectual and developmental outcome in neonatal patients with early-onset urea cycle disorders (UCD) experiencing hyperammonaemic coma. METHODS We retrospectively analysed ammonia (NH3) and glutamine levels, electroencephalogram and brain images obtained during neonatal coma of UCD patients born between 1995 and 2011 and managed at a single centre and correlated them to survival and intellectual and developmental outcome. RESULTS We included 38 neonates suffering from deficiencies of argininosuccinate synthetase (ASSD, N = 12), ornithine transcarbamylase (OTCD, N = 10), carbamoylphosphate synthetase 1 (CPSD, N = 7), argininosuccinate lyase (ASLD, N = 7), N-acetylglutamate synthase (NAGS, N = 1) or arginase (ARGD, N = 1). Symptoms occurred earlier in mitochondrial than in cytosolic UCD. Sixty-eight percent of patients survived, with a mean (standard deviation-SD) follow-up of 10.4 (5.3) years. Mortality was mostly observed in OTCD (N = 7/10) and CPSD (N = 4/7) patients. Plasma NH3 level during the neonatal period, expressed as area under the curve, but not glutamine level was associated with mortality (p = .044 and p = .610). 62.1% of the patients had normal intellectual and developmental outcome. Intellectual and developmental outcome tended to correlate with UCD subtype (p = .052). No difference in plasma NH3 or glutamine level during the neonatal period among developmental outcomes was identified. EEG severity was linked to UCD subtypes (p = .004), ammonia levels (p = .037), duration of coma (p = .043), and mortality during the neonatal period (p = .020). Status epilepticus was recorded in 6 patients, 3 of whom died neonatally, 1 developed a severe intellectual disability while the 2 last patients had a normal development. CONCLUSION UCD subtypes differed by survival rate, intellectual and developmental outcome and EEG features in the neonatal period. Hyperammonaemia expressed as area under the curve was associated with survival but not with intellectual and developmental outcome whereas glutamine was not associated with one of these outcomes. Prognostic value of video-EEG monitoring and the association between status epilepticus and mortality should be assessed in neonatal hyperammonaemic coma in further studies.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France; Metabolomics Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France.
| | - Célina Roda
- Université de Paris, CRESS, INSERM, INRA, HERA team (Health Environmental Risk Assessment), F-75004 Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | | | - Anais Brassier
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Florence Habarou
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France; Metabolomics Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Valérie Barbier
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Coraline Grisel
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Marie-Thérèse Abi-Warde
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, PRES Sorbonne Paris Cité, INSERM U1000, Institut Imagine, Paris, France
| | - Alice Kuster
- Pediatric Critical Care Unit, Femme-Enfants-Adolescents Hospital, Nantes University, Nantes, France
| | - Aude Servais
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France; Department of Nephrology, Transplantation, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Neurophysiology Unit, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - Carole Hennequin
- Biochemistry, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Laurent Dupic
- Pediatric Critical Care Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Fabrice Lesage
- Pediatric Critical Care Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Guy Touati
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Vassili Valayannopoulos
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| | - Bernadette Chadefaux-Vekemans
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France; Metabolomics Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Mehdi Oualha
- Pediatric Critical Care Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Monika Eisermann
- Neurophysiology Unit, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - Chris Ottolenghi
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France; Metabolomics Unit, Necker Enfants Malades Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Paris Descartes University, Paris, France
| |
Collapse
|
5
|
Baruteau J, Diez-Fernandez C, Lerner S, Ranucci G, Gissen P, Dionisi-Vici C, Nagamani S, Erez A, Häberle J. Argininosuccinic aciduria: Recent pathophysiological insights and therapeutic prospects. J Inherit Metab Dis 2019; 42:1147-1161. [PMID: 30723942 DOI: 10.1002/jimd.12047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.
Collapse
Affiliation(s)
- Julien Baruteau
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Giusy Ranucci
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paul Gissen
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Johannes Häberle
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP) and Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
6
|
Wiwattanadittakul N, Prust M, Gaillard WD, Massaro A, Vezina G, Tsuchida TN, Gropman AL. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol Genet Metab 2018; 125:235-240. [PMID: 30197275 DOI: 10.1016/j.ymgme.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Continuous EEG studies demonstrate that neonates with seizures due to cerebral pathology, such as hypoxia ischemia, exhibit predominantly electrographic seizures (i.e. those only detected with EEG because they lack clinical features). Previous small case series demonstrate EEG changes and seizures during hyperammonemia associated with inborn errors of metabolism (IEM) but there are no reports utilizing continuous EEG in these conditions. OBJECTIVE To characterize seizures and evaluate the utility of continuous EEG recording during hyperammonemia due to inborn errors of metabolism. METHODS We retrospectively reviewed medical records and EEG tracings of neonates who presented with hyperammonemia due to inborn errors of metabolism who had continuous EEG and full medical records available for review, including follow up. RESULTS Eight neonates with hyperammonemia were studied, 7 had urea cycle defects: Argininosuccinate lyase deficiency [3], (ornithine transcarbamylase deficiency [3], carbomyl phosphate synthase deficiency [1] and one had an organic acidemia: Methylmalonic acidemia [1]. Most common presentations were lethargy and poor feeding at 12-72 h of life. The highest blood ammonia level was 874 μmol/L (median); range 823-1647 μmol/L (normal value <50 μmol/L in term neonates). Seven were treated with hemodialysis in addition to nitrogen scavengers. Seven neonates had seizures; six had only electrographic seizures. Seizures initially occurred within 24-36 h of clinical presentation, sometimes with normal ammonia and glutamine levels. Neonates with seizures all lacked state changes on EEG. Inter burst interval duration correlated with degree of hyperammonemia. Two cases with normal plasma ammonia but increasing interburst interval duration were proven to have stroke by MRI. CONCLUSIONS Seizures occur frequently in neonates with hyperammonemia; most can be detected only with continuous EEG. Seizures may occur when ammonia and glutamine levels are normal. Interburst interval duration is associated with ammonia levels or cerebral dysfunction from other brain pathology. Continuous EEG can be a useful tool for managing infants with hyperammonemia and may be essential for seizure management especially for infants in deep metabolic coma.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/blood
- Amino Acid Metabolism, Inborn Errors/diagnostic imaging
- Amino Acid Metabolism, Inborn Errors/physiopathology
- Ammonia/blood
- Argininosuccinate Synthase/blood
- Argininosuccinic Aciduria/blood
- Argininosuccinic Aciduria/diagnostic imaging
- Argininosuccinic Aciduria/physiopathology
- Electroencephalography
- Female
- Glutamine/blood
- Humans
- Hyperammonemia/blood
- Hyperammonemia/diagnostic imaging
- Hyperammonemia/physiopathology
- Hypoxia-Ischemia, Brain/blood
- Hypoxia-Ischemia, Brain/diagnostic imaging
- Hypoxia-Ischemia, Brain/physiopathology
- Infant
- Infant, Newborn
- Male
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/diagnostic imaging
- Metabolism, Inborn Errors/physiopathology
- Ornithine Carbamoyltransferase Deficiency Disease/blood
- Ornithine Carbamoyltransferase Deficiency Disease/diagnostic imaging
- Ornithine Carbamoyltransferase Deficiency Disease/physiopathology
- Seizures/blood
- Seizures/diagnostic imaging
- Seizures/physiopathology
Collapse
Affiliation(s)
- Natrujee Wiwattanadittakul
- Department of Pediatrics, Chiang Mai University Hospital, Chiang Mai University, Chiang Mai, Thailand; Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States
| | - Morgan Prust
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - William Davis Gaillard
- Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States
| | - An Massaro
- Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States
| | - Gilbert Vezina
- Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States
| | - Tammy N Tsuchida
- Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States
| | - Andrea L Gropman
- Center for Neuroscience, Children Neuroscience, Medical System, George Washington University, Washington, DC, United States.
| |
Collapse
|
7
|
Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis 2007; 30:865-79. [PMID: 18038189 PMCID: PMC3758693 DOI: 10.1007/s10545-007-0709-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/13/2007] [Accepted: 10/18/2007] [Indexed: 12/19/2022]
Abstract
The urea cycle disorders constitute a group of rare congenital disorders caused by a deficiency of the enzymes or transport proteins required to remove ammonia from the body. Via a series of biochemical steps, nitrogen, the waste product of protein metabolism, is removed from the blood and converted into urea. A consequence of these disorders is hyperammonaemia, resulting in central nervous system dysfunction with mental status changes, brain oedema, seizures, coma, and potentially death. Both acute and chronic hyperammonaemia result in alterations of neurotransmitter systems. In acute hyperammonaemia, activation of the NMDA receptor leads to excitotoxic cell death, changes in energy metabolism and alterations in protein expression of the astrocyte that affect volume regulation and contribute to oedema. Neuropathological evaluation demonstrates alterations in the astrocyte morphology. Imaging studies, in particular (1)H MRS, can reveal markers of impaired metabolism such as elevations of glutamine and reduction of myoinositol. In contrast, chronic hyperammonaemia leads to adaptive responses in the NMDA receptor and impairments in the glutamate-nitric oxide-cGMP pathway, leading to alterations in cognition and learning. Therapy of acute hyperammonaemia has relied on ammonia-lowering agents but in recent years there has been considerable interest in neuroprotective strategies. Recent studies have suggested restoration of learning abilities by pharmacological manipulation of brain cGMP with phosphodiesterase inhibitors. Thus, both strategies are intriguing areas for potential investigation in human urea cycle disorders.
Collapse
Affiliation(s)
- A L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, 111 Michigan Avenue, N. W., Washington, DC 20010, USA.
| | | | | |
Collapse
|
8
|
Abstract
A 3-day-old infant presented with anorexia, irritability, hypotonia, and seizures. Blood ammonia was 2115 micromol/L and amino and organic acid analyses were consistent with ornithine transcarbamylase deficiency. Liver biopsy confirmed only 1% enzyme activity. The patient was treated with hemodialysis. An electroencephalogram (EEG) revealed multifocal independent spike-and-sharp-wave discharges. After initial stabilization he was placed on a low-protein diet with citrulline and phenylbutyrate. Conjugating agents (arginine, sodium benzoate, and sodium phenylacetate) have been added during periods of metabolic decompensation. Although developmentally delayed, the patient has shown signs of clinical improvement and EEG activity has likewise improved with only mild background slowing and no evidence of epileptogenic activity at 4 years of age. A second infant presented at 3 days of age with a similar history, blood ammonia of 1382 micromol/L, and metabolic studies indicative of ornithine transcarbamylase deficiency. EEG showed multifocal independent ictal and interictal discharges. Electrographic abnormalities persisted despite lowering of blood ammonia with hemodialysis and conjugating agents. The patient continued to decline clinically and died on the 7th hospital day. EEG changes parallel the clinical course of ornithine transcarbamylase deficiency and may serve as an objective marker of the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- P Brunquell
- Department of Pediatrics, Connecticut Children's Medical Center, Hartford 06106, USA.
| | | | | |
Collapse
|
9
|
Nagata N, Matsuda I, Matsuura T, Oyanagi K, Tada K, Narisawa K, Kitagawa T, Sakiyama T, Yamashita F, Yoshino M. Retrospective survey of urea cycle disorders: Part 2. Neurological outcome in forty-nine Japanese patients with urea cycle enzymopathies. AMERICAN JOURNAL OF MEDICAL GENETICS 1991; 40:477-81. [PMID: 1746614 DOI: 10.1002/ajmg.1320400421] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We analyzed neurological data, including DQ or IQ, EEG, and CT scan, in 49 patients with urea cycle enzymopathies, all of whom were included in a retrospective survey from 1978-1988 in Japan. We classified 3 groups depending on age-at-onset: group 1 (0-28 days, N = 11), group 2 (29 days-5 years, N = 31), and group 3 (greater than 5 years, N = 7). The least DQ or IQ score and the highest CT score, representing the most severe brain damage was found in group 1, and the highest DQ or IQ and the least CT score was found in group 3. Intermediate scores of both parameters were found in group 2. There was a negative correlation between these 2 parameters (r = -0.82, P less than 0.01). Abnormal EEG during the attack-free period was predominantly observed in patients with CT abnormalities compared to those with a normal CT scan (P less than 0.01). Approximately 40% of the patients, mostly in groups 2 and 3 (92.8%) had normal findings in all 3 parameters. Thus, the magnitude of developmental abnormalities is clearly related to the degree of brain damage and to the age-at-onset of these diseases.
Collapse
Affiliation(s)
- N Nagata
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Clancy RR, Chung HJ. EEG changes during recovery from acute severe neonatal citrullinemia. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1991; 78:222-7. [PMID: 1707794 DOI: 10.1016/0013-4694(91)90036-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report our observations of serial clinical and EEG examinations in 3 neonates during recovery from acute severe encephalopathy due to citrullinemia. Their electroclinical picture closely resembles the clinical stages of experimental models of hyperammonemia in monkeys. The length of the EEG interburst interval, a quantitative measure of EEG background abnormality, correlated with elevated serum levels of ammonia and suggests that hyperammonemia itself is a key figure in the genesis of encephalopathy in this condition. Finally, the manner in which the EEG normalizes during recovery from hyperammonemia in this setting suggests that burst-suppression resembles an exaggerated regression to the discontinuity of the very premature infant.
Collapse
Affiliation(s)
- R R Clancy
- Division of Neurology, Children's Hospital of Philadelphia, PA 19104
| | | |
Collapse
|
11
|
Abstract
Three female infants with citrullinemia were followed clinically, biochemically and by electroencephalography. All three had episodes of vomiting, lethargy and hyperammonemia shortly after birth. The two more severe cases developed convulsions. They were saved by peritoneal dialysis, or repeated exchange transfusions followed by dietary adjustment. Multifocal spikes or repetitive paroxysmal activity of various kinds were seen in the EEGs at times of crisis. There was a lag in the EEG returning to normal after ammonia levels had returned to normal. Citrulline remained elevated in all cases. Follow-up over years revealed mild spasticity, mental retardation and, in one case, cortical atrophy.
Collapse
|