1
|
Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM. Cholinergic modulation of motor sequence learning. Eur J Neurosci 2024; 60:3706-3718. [PMID: 38716689 DOI: 10.1111/ejn.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/06/2024]
Abstract
The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catharina Mohrbutter
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Hils
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Steve Schulz
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Weuthen
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Uwe Brämer
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Fernández A, Ramírez-Toraño F, Bruña R, Zuluaga P, Esteba-Castillo S, Abásolo D, Moldenhauer F, Shumbayawonda E, Maestú F, García-Alba J. Brain signal complexity in adults with Down syndrome: Potential application in the detection of mild cognitive impairment. Front Aging Neurosci 2022; 14:988540. [PMID: 36337705 PMCID: PMC9631477 DOI: 10.3389/fnagi.2022.988540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Down syndrome (DS) is considered the most frequent cause of early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs are present in almost all individuals with DS by the age of 40. Despite of this evidence, the investigation on the pre-dementia stages in DS is scarce. In the present study we analyzed the complexity of brain oscillatory patterns and neuropsychological performance for the characterization of mild cognitive impairment (MCI) in DS. Materials and methods Lempel-Ziv complexity (LZC) values from resting-state magnetoencephalography recordings and the neuropsychological performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment (CN-no-DS) were analyzed. Results Lempel-Ziv complexity was lowest in the frontal region within the MCI-DS group, while the CN-DS group showed reduced values in parietal areas when compared with the CN-no-DS group. Also, the CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while MCI-DS cases showed a decrease. The combination of reduced LZC values and a divergent trajectory of complexity evolution with age, allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic impairment was significantly associated in MCI-DS cases with the significant reduction of LZC values in frontal and parietal regions (p = 0.01). Conclusion Brain signal complexity measured with LZC is reduced in DS and its development with age is also disrupted. The combination of both features might assist in the detection of MCI within this population.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), Hospital Universitario San Carlos, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
- Department of Industrial Engineering & IUNE & ITB, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Zuluaga
- Statistics & Operations Research Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Neurodevelopmental Group, Girona Biomedical Research Institute-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Daniel Abásolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Internal Medicine Department, Health Research Institute, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elizabeth Shumbayawonda
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Department of Research and Psychology in Education, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Javier García-Alba,
| |
Collapse
|
4
|
Paoletti P, Leshem R, Pellegrino M, Ben-Soussan TD. Tackling the Electro-Topography of the Selves Through the Sphere Model of Consciousness. Front Psychol 2022; 13:836290. [PMID: 35664179 PMCID: PMC9161303 DOI: 10.3389/fpsyg.2022.836290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the current hypothesis paper, we propose a novel examination of consciousness and self-awareness through the neuro-phenomenological theoretical model known as the Sphere Model of Consciousness (SMC). Our aim is to create a practical instrument to address several methodological issues in consciousness research. We present a preliminary attempt to validate the SMC via a simplified electrophysiological topographic map of the Self. This map depicts the gradual shift from faster to slower frequency bands that appears to mirror the dynamic between the various SMC states of Self. In order to explore our hypothesis that the SMC's different states of Self correspond to specific frequency bands, we present a mini-review of studies examining the electrophysiological activity that occurs within the different states of Self and in the context of specific meditation types. The theoretical argument presented here is that the SMC's hierarchical organization of three states of the Self mirrors the hierarchical organization of Focused Attention, Open Monitoring, and Non-Dual meditation types. This is followed by testable predictions and potential applications of the SMC and the hypotheses derived from it. To our knowledge, this is the first integrated electrophysiological account that combines types of Self and meditation practices. We suggest this electro-topographic framework of the Selves enables easier, clearer conceptualization of the connections between meditation types as well as increased understanding of wakefulness states and altered states of consciousness.
Collapse
Affiliation(s)
- Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| |
Collapse
|
5
|
PARIETAL INTRAHEMISPHERIC SOURCE CONNECTIVITY OF RESTING-STATE ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS IS ABNORMAL IN NAÏVE HIV PATIENTS. Brain Res Bull 2022; 181:129-143. [DOI: 10.1016/j.brainresbull.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
|
6
|
Gurja JP, Muthukrishnan SP, Tripathi M, Sharma R. Reduced Resting-State Cortical Alpha Connectivity Reflects Distinct Functional Brain Dysconnectivity in Alzheimer's Disease and Mild Cognitive Impairment. Brain Connect 2021; 12:134-145. [PMID: 34030487 DOI: 10.1089/brain.2020.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Emerging evidence suggests distinct abnormal activity patterns during resting state in intrinsic functional brain networks in patients with neurodegenerative diseases, including Alzheimer's disease (AD) and mild cognitive impairment (MCI). This study aimed to identify the changes in the resting-state intracortical lagged phase synchronization derived from dense array electroencephalography (EEG) in AD and MCI. Methods: Resting-state current source density (CSD) and lagged phase synchronization between 84 regions of interest defined by Brodmann areas (BAs) for seven EEG frequency bands were investigated between the study groups (AD, MCI, and age-matched controls) using 128-channel EEG. Results: Reduced CSD and connectivity (large effect size, Cohen's d > 0.8) were found in AD and MCI compared with controls at alpha frequency. However, a positive correlation (r = 0.433; p = 0.044) of mini-mental state examination scores was found with BA 32-33 connectivity values in AD only. Conclusion: Reduced resting-state alpha 1 source connectivity in patient groups and correlation between attenuation of resting-state alpha 1 connectivity with cognitive decline in AD could indicate the disruption of inhibitory function of alpha rhythm leading to tonic unselective cortical excitation that affects attention and controlled access to stored information.
Collapse
Affiliation(s)
- John Preetham Gurja
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Del Percio C, Derambure P, Noce G, Lizio R, Bartrés-Faz D, Blin O, Payoux P, Deplanque D, Méligne D, Chauveau N, Bourriez JL, Casse-Perrot C, Lanteaume L, Thalamas C, Dukart J, Ferri R, Pascarelli MT, Richardson JC, Bordet R, Babiloni C. Sleep deprivation and Modafinil affect cortical sources of resting state electroencephalographic rhythms in healthy young adults. Clin Neurophysiol 2019; 130:1488-1498. [PMID: 31295717 DOI: 10.1016/j.clinph.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE It has been reported that sleep deprivation affects the neurophysiological mechanisms underpinning the vigilance. Here, we tested the following hypotheses in the PharmaCog project (www.pharmacog.org): (i) sleep deprivation may alter posterior cortical delta and alpha sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms in healthy young adults; (ii) after the sleep deprivation, a vigilance enhancer may recover those rsEEG source markers. METHODS rsEEG data were recorded in 36 healthy young adults before (Pre-sleep deprivation) and after (Post-sleep deprivation) one night of sleep deprivation. In the Post-sleep deprivation, these data were collected after a single dose of PLACEBO or MODAFINIL. rsEEG cortical sources were estimated by eLORETA freeware. RESULTS In the PLACEBO condition, the sleep deprivation induced an increase and a decrease in posterior delta (2-4 Hz) and alpha (8-13 Hz) source activities, respectively. In the MODAFINIL condition, the vigilance enhancer partially recovered those source activities. CONCLUSIONS The present results suggest that posterior delta and alpha source activities may be both related to the regulation of human brain arousal and vigilance in quiet wakefulness. SIGNIFICANCE Future research in healthy young adults may use this methodology to preselect new symptomatic drug candidates designed to normalize brain arousal and vigilance in seniors with dementia.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Philippe Derambure
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | | | | | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Healthy Sciences, University of Barcelona; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olivier Blin
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Pierre Payoux
- INSERM, Imagerie Cérébrale et Handicaps Neurologiques, Toulouse, France
| | - Dominique Deplanque
- Univ Lille, Inserm, CHU Lille, CIC1403 & UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Déborah Méligne
- INSERM UMR 825 Brain Imaging and Neurological Dysfunctions, Toulouse, France
| | - Nicolas Chauveau
- INSERM UMR 825 Brain Imaging and Neurological Dysfunctions, Toulouse, France
| | - Jean Louis Bourriez
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Catherine Casse-Perrot
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Laura Lanteaume
- Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France
| | - Claire Thalamas
- Department of Medical Pharmacology, INSERM CIC 1436, Toulouse University Medical Center, Toulouse, France
| | - Juergen Dukart
- F. Hoffmann-La Roche, Pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | | | | | - Regis Bordet
- Univ Lille, Inserm, CHU Lille, UMR_S 1171 - Degenerative and Vascular Cognitive Disorders, F59000 Lille, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | |
Collapse
|
8
|
Abnormalities of functional cortical source connectivity of resting-state electroencephalographic alpha rhythms are similar in patients with mild cognitive impairment due to Alzheimer's and Lewy body diseases. Neurobiol Aging 2019; 77:112-127. [PMID: 30797169 DOI: 10.1016/j.neurobiolaging.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/01/2023]
Abstract
Previous evidence has shown different resting-state eyes-closed electroencephalographic delta (<4 Hz) and alpha (8-10.5 Hz) source connectivity in subjects with dementia due to Alzheimer's (ADD) and Lewy body (DLB) diseases. The present study tested if the same differences may be observed in the prodromal stages of mild cognitive impairment (MCI). Here, clinical and resting-state eyes-closed electroencephalographic data in age-, gender-, and education-matched 30 ADMCI, 23 DLBMCI, and 30 healthy elderly (Nold) subjects were available in our international archive. Mini-Mental State Evaluation (MMSE) score was matched in the ADMCI and DLBMCI groups. The eLORETA freeware estimated delta and alpha source connectivity by the tool called lagged linear connectivity (LLC). Area under receiver operating characteristic curve (AUROCC) indexed the classification accuracy among individuals. Results showed that widespread interhemispheric and intrahemispheric LLC solutions in alpha sources were abnormally lower in both MCI groups compared with the Nold group, but with no differences were found between the 2 MCI groups. AUROCCs of LLC solutions in alpha sources exhibited significant accuracies (0.72-0.75) in the discrimination of Nold versus ADMCI-DLBMCI individuals, but not between the 2 MCI groups. These findings disclose similar abnormalities in ADMCI and DLBMCI patients as revealed by alpha source connectivity. It can be speculated that source connectivity mostly reflects common cholinergic impairment in prodromal state of both AD and DLB, before a substantial dopaminergic derangement in the dementia stage of DLB.
Collapse
|
9
|
de Frutos-Lucas J, López-Sanz D, Zuluaga P, Rodríguez-Rojo IC, Luna R, López ME, Delgado-Losada ML, Marcos A, Barabash A, López-Higes R, Maestú F, Fernández A. Physical activity effects on the individual alpha peak frequency of older adults with and without genetic risk factors for Alzheimer’s Disease: A MEG study. Clin Neurophysiol 2018; 129:1981-1989. [DOI: 10.1016/j.clinph.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
|
10
|
Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases. Clin Neurophysiol 2018; 129:766-782. [PMID: 29448151 DOI: 10.1016/j.clinph.2018.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study tested the hypothesis that markers of functional cortical source connectivity of resting state eyes-closed electroencephalographic (rsEEG) rhythms may be abnormal in subjects with mild cognitive impairment due to Alzheimer's (ADMCI) and Parkinson's (PDMCI) diseases compared to healthy elderly subjects (Nold). METHODS rsEEG data had been collected in ADMCI, PDMCI, and Nold subjects (N = 75 for any group). eLORETA freeware estimated functional lagged linear connectivity (LLC) from rsEEG cortical sources. Area under receiver operating characteristic (AUROC) curve indexed the accuracy in the classification of Nold and MCI individuals. RESULTS Posterior interhemispheric and widespread intrahemispheric alpha LLC solutions were abnormally lower in both MCI groups compared to the Nold group. At the individual level, AUROC curves of LLC solutions in posterior alpha sources exhibited moderate accuracies (0.70-0.72) in the discrimination of Nold vs. ADMCI-PDMCI individuals. No differences in the LLC solutions were found between the two MCI groups. CONCLUSIONS These findings unveil similar abnormalities in functional cortical connectivity estimated in widespread alpha sources in ADMCI and PDMCI. This was true at both group and individual levels. SIGNIFICANCE The similar abnormality of alpha source connectivity in ADMCI and PDMCI subjects might reflect common cholinergic impairment.
Collapse
|
11
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, Vacca L, De Pandis MF, Bonanni L. Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging 2017; 65:18-40. [PMID: 29407464 DOI: 10.1016/j.neurobiolaging.2017.12.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
Previous evidence showed abnormal posterior sources of resting-state delta (<4 Hz) and alpha (8-12 Hz) rhythms in patients with Alzheimer's disease with dementia (ADD), Parkinson's disease with dementia (PDD), and Lewy body dementia (DLB), as cortical neural synchronization markers in quiet wakefulness. Here, we tested the hypothesis of additional abnormalities in functional cortical connectivity computed in those sources, in ADD, considered as a "disconnection cortical syndrome", in comparison with PDD and DLB. Resting-state eyes-closed electroencephalographic (rsEEG) rhythms had been collected in 42 ADD, 42 PDD, 34 DLB, and 40 normal healthy older (Nold) participants. Exact low-resolution brain electromagnetic tomography (eLORETA) freeware estimated the functional lagged linear connectivity (LLC) from rsEEG cortical sources in delta, theta, alpha, beta, and gamma bands. The area under receiver operating characteristic (AUROC) curve indexed the classification accuracy between Nold and diseased individuals (only values >0.7 were considered). Interhemispheric and intrahemispheric LLCs in widespread delta sources were abnormally higher in the ADD group and, unexpectedly, normal in DLB and PDD groups. Intrahemispheric LLC was reduced in widespread alpha sources dramatically in ADD, markedly in DLB, and moderately in PDD group. Furthermore, the interhemispheric LLC in widespread alpha sources showed lower values in ADD and DLB than PDD groups. At the individual level, AUROC curves of LLC in alpha sources exhibited better classification accuracies for the discrimination of ADD versus Nold individuals (0.84) than for DLB versus Nold participants (0.78) and PDD versus Nold participants (0.75). Functional cortical connectivity markers in delta and alpha sources suggest a more compromised neurophysiological reserve in ADD than DLB, at both group and individual levels.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy; Casa di Cura Privata del Policlinico (CCPP) Milano SpA, Milan, Italy
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Engels MMA, van der Flier WM, Stam CJ, Hillebrand A, Scheltens P, van Straaten ECW. Alzheimer's disease: The state of the art in resting-state magnetoencephalography. Clin Neurophysiol 2017. [PMID: 28622527 DOI: 10.1016/j.clinph.2017.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is accompanied by functional brain changes that can be detected in imaging studies, including electromagnetic activity recorded with magnetoencephalography (MEG). Here, we systematically review the studies that have examined resting-state MEG changes in AD and identify areas that lack scientific or clinical progress. Three levels of MEG analysis will be covered: (i) single-channel signal analysis, (ii) pairwise analyses over time series, which includes the study of interdependencies between two time series and (iii) global network analyses. We discuss the findings in the light of other functional modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Overall, single-channel MEG results show consistent changes in AD that are in line with EEG studies, but the full potential of the high spatial resolution of MEG and advanced functional connectivity and network analysis has yet to be fully exploited. Adding these features to the current knowledge will potentially aid in uncovering organizational patterns of brain function in AD and thereby aid the understanding of neuronal mechanisms leading to cognitive deficits.
Collapse
Affiliation(s)
- M M A Engels
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - W M van der Flier
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Graef S, Schönknecht P, Sabri O, Hegerl U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl) 2011; 215:205-29. [PMID: 21212938 DOI: 10.1007/s00213-010-2153-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023]
Abstract
RATIONALE The cholinergic system has long been linked to cognitive processes. Two main classes of acetylcholine (ACh) receptors exist in the human brain, namely muscarinic and nicotinic receptors, of which several subtypes occur. OBJECTIVES This review seeks to provide an overview of previous findings on the influence of cholinergic receptor manipulations on cognition in animals and humans, with particular emphasis on the role of selected cholinergic receptor subtypes. Furthermore, the involvement of these receptor subtypes in the regulation of emotion and brain electrical activity as measured by electroencephalography (EEG) shall be addressed since these domains are considered to be important modulators of cognitive functioning. RESULTS In regard to cognition, the muscarinic receptor subtypes have been implicated mainly in memory functions, but have also been linked to attentional processes. The nicotinic α7 receptor subtype is involved in working memory, whereas the α4β2* subtype has been linked to tests of attention. Both muscarinic and nicotinic cholinergic mechanisms play a role in modulating brain electrical activity. Nicotinic receptors have been strongly associated with the modulation of depression and anxiety. CONCLUSIONS Cholinergic receptor manipulations have an effect on cognition, emotion, and brain electrical activity as measured by EEG. Changes in cognition can result from direct cholinergic receptor manipulation or from cholinergically induced changes in vigilance or affective state.
Collapse
Affiliation(s)
- Susanne Graef
- Department of Psychiatry, University of Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
14
|
The use of EEG in Alzheimer’s disease, with and without scopolamine – A pilot study. Clin Neurophysiol 2010; 121:836-41. [DOI: 10.1016/j.clinph.2010.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 11/23/2022]
|
15
|
Foster PS, Harrison DW, Crucian GP, Drago V, Rhodes RD, Heilman KM. Reduced Verbal Learning Associated With Posterior Temporal Lobe Slow Wave Activity. Dev Neuropsychol 2007; 33:25-43. [DOI: 10.1080/87565640701729706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Kogan EA, Verchovsky RG, Neufeld MY, Klimovitsky SS, Treves TA, Korczyn AD. Long-term tetrahydroaminoacridine treatment and quantitative EEG in Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:203-6. [PMID: 17982896 DOI: 10.1007/978-3-211-73574-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The development of therapies for Alzheimer's disease (AD) has focused on drugs designed to correct the loss of cholinergic function within the central nervous system. Quantitative EEG (qEEG) changes associated with AD consist of background slowing. One way to study the effects of cholinergic drugs may be through assessment of their qEEG effects. The aim of the current work was to evaluate the effect of long-term treatment with tetrahydroaminoacridine (THA) on qEEG in AD patients.
Collapse
Affiliation(s)
- E A Kogan
- EEG and Epilepsy Unit, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Wienbruch C. Abnormal slow wave mapping (ASWAM)--A tool for the investigation of abnormal slow wave activity in the human brain. J Neurosci Methods 2007; 163:119-27. [PMID: 17395269 DOI: 10.1016/j.jneumeth.2007.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/16/2007] [Accepted: 02/18/2007] [Indexed: 11/17/2022]
Abstract
Slow waves in the delta and theta frequency range, normal signs of deactivated networks in sleep stages, are considered 'abnormal' when prominent in the waking state and when generated in circumscribed brain areas. Structural cortical lesions, e.g. related to stroke, tumors, or scars, generate focal electric and magnetic slow wave activity in the penumbra. Focal concentrations of slow wave activity exceeding those of healthy subjects have also been found in individuals suffering from psychiatric disorders without obvious structural brain damage. Hence, identification and mapping of abnormal slow wave activity might contribute to the investigation of cortical indications of psychopathology. Here I propose a method for abnormal slow wave mapping (ASWAM), based on a 5 min resting magnetoencephalogramm (MEG) and equivalent current dipole fitting to sources in the 1-4 Hz frequency band (delta) in anatomically defined cortical regions. The method was tested in a sample of 116 healthy subjects (59 males), with the aim to provide a basis for later comparison with patient samples. As to be expected, delta dipole density was low in healthy subjects. However, its distribution differed between genders with fronto-central>posterior dipole density in male and posterior dominance in female participants, which was not significantly related to either age or head size. Results suggest that this method allows the identification of ASWA, so that comparison against Z-scores from a larger normal control group might assist diagnostic purposes in patient groups. As specific distributions seem to reflect differences between genders, this should be considered also in the analysis of patient samples.
Collapse
Affiliation(s)
- Christian Wienbruch
- Department of Psychology, University of Konstanz, P.O. Box D23, D-78457 Konstanz, Germany.
| |
Collapse
|
18
|
Fernández A, Hornero R, Mayo A, Poza J, Maestú F, Ortiz Alonso T. Quantitative magnetoencephalography of spontaneous brain activity in Alzheimer disease: an exhaustive frequency analysis. Alzheimer Dis Assoc Disord 2006; 20:153-9. [PMID: 16917185 DOI: 10.1097/00002093-200607000-00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative magnetoencephalography (qMEG) was used to investigate differences in the 2 to 60 Hz spectral power, between Alzheimer disease (AD) patients and control subjects. Twenty-two AD patients and 21 age-matched control subjects participated in this study. MEG signal analysis comprised the division of the entire 2 to 60 Hz spectrum in 2 Hz-width subbands. Both the relative power and the contribution of each subband to the correct classification of AD patients and controls were calculated. The relative power in 2 bands comprised between 2 to 4 Hz and 16 to 28 Hz was selected by a restrictive multiple-comparison test, among the entire 2 to 60 Hz spectrum. Using 2 to 4 Hz values it is possible to choose a classification rule with an estimate sensitivity and specificity given by 68% and 76% respectively. Alternatively, when 16 to 28 Hz values are used, it is possible to obtain a better classification rule with an estimate sensitivity and specificity given by 81% and 80%, respectively. To the best of our knowledge, this is the first electroencephalography or MEG study where a so exhaustive analysis of the magneto-electric spectrum has been performed. This study supports the notion that more attention should be devoted to the study of beta band in AD.
Collapse
Affiliation(s)
- Alberto Fernández
- Centro de Magnetoencefalografía Dr Pérez-Modrego, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Nurten A, Ozen I, Karamursel S, Kara I. Electroencephalographic characterization of scopolamine-induced convulsions in fasted mice after food intake. Seizure 2006; 15:509-19. [PMID: 16890459 DOI: 10.1016/j.seizure.2006.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/24/2006] [Accepted: 06/12/2006] [Indexed: 11/15/2022] Open
Abstract
The present study was conducted to evaluate scopolamine-induced convulsions in fasted mice after food intake effects on the cortical electroencephalogram (EEG). Continuous EEG recordings were taken with Neuroscan for 10 min in freely moving mice with six chronic cortical electrode implants. Animals were weighed and deprived of food for 48 h. EEG recordings were taken at the 24th and 48th hour after their food deprivations. Later, all animals were treated with saline or scopolamine of 3mg/kg i.p. and EEG recordings were repeated for 10 min. Twenty minutes later, they were given food pellets and were allowed to eat ad libitum. All animals were observed for 60 min to determine the incidence and onset of convulsions and EEG recordings were taken simultaneously. The present results demonstrate that food deprivation causes differences in EEG in the elapsed time. The changes in EEG induced after food deprivation become different with scopolamine administration. In scopolamine treatment group, eating caused a series of high-voltage polyspikes and synchronized spikes with a predominant frequency in the 1-3 Hz range and fast activity that represents a typical epileptiform manifestation. It was concluded that the EEG properties and the behavioral patterns of these convulsions are in accordance with each other.
Collapse
Affiliation(s)
- Asiye Nurten
- Istanbul University, Institute for Experimental Medical Research, Department of Neuroscience, 34280, Istanbul, Turkey.
| | | | | | | |
Collapse
|
20
|
Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005; 25:141-58. [PMID: 15734351 DOI: 10.1016/j.neuroimage.2004.10.044] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/07/2004] [Accepted: 10/28/2004] [Indexed: 11/16/2022] Open
Abstract
Fractional Gaussian noise (fGn) provides a parsimonious model for stationary increments of a self-similar process parameterised by the Hurst exponent, H, and variance, sigma2. Fractional Gaussian noise with H < 0.5 demonstrates negatively autocorrelated or antipersistent behaviour; fGn with H > 0.5 demonstrates 1/f, long memory or persistent behaviour; and the special case of fGn with H = 0.5 corresponds to classical Gaussian white noise. We comparatively evaluate four possible estimators of fGn parameters, one method implemented in the time domain and three in the wavelet domain. We show that a wavelet-based maximum likelihood (ML) estimator yields the most efficient estimates of H and sigma2 in simulated fGn with 0 < H < 1. Applying this estimator to fMRI data acquired in the "resting" state from healthy young and older volunteers, we show empirically that fGn provides an accommodating model for diverse species of fMRI noise, assuming adequate preprocessing to correct effects of head movement, and that voxels with H > 0.5 tend to be concentrated in cortex whereas voxels with H < 0.5 are more frequently located in ventricles and sulcal CSF. The wavelet-ML estimator can be generalised to estimate the parameter vector beta for general linear modelling (GLM) of a physiological response to experimental stimulation and we demonstrate nominal type I error control in multiple testing of beta, divided by its standard error, in simulated and biological data under the null hypothesis beta = 0. We illustrate these methods principally by showing that there are significant differences between patients with early Alzheimer's disease (AD) and age-matched comparison subjects in the persistence of fGn in the medial and lateral temporal lobes, insula, dorsal cingulate/medial premotor cortex, and left pre- and postcentral gyrus: patients with AD had greater persistence of resting fMRI noise (larger H) in these regions. Comparable abnormalities in the AD patients were also identified by a permutation test of local differences in the first-order autoregression AR(1) coefficient, which was significantly more positive in patients. However, we found that the Hurst exponent provided a more sensitive metric than the AR(1) coefficient to detect these differences, perhaps because neurophysiological changes in early AD are naturally better described in terms of abnormal salience of long memory dynamics than a change in the strength of association between immediately consecutive time points. We conclude that parsimonious mapping of fMRI noise properties in terms of fGn parameters efficiently estimated in the wavelet domain is feasible and can enhance insight into the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Voichiţa Maxim
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive and intellectual deficits and behavior disturbance. The electroencephalogram (EEG) has been used as a tool for diagnosing AD for several decades. The hallmark of EEG abnormalities in AD patients is a shift of the power spectrum to lower frequencies and a decrease in coherence of fast rhythms. These abnormalities are thought to be associated with functional disconnections among cortical areas resulting from death of cortical neurons, axonal pathology, cholinergic deficits, etc. This article reviews main findings of EEG abnormalities in AD patients obtained from conventional spectral analysis and nonlinear dynamical methods. In particular, nonlinear alterations in the EEG of AD patients, i.e. a decreased complexity of EEG patterns and reduced information transmission among cortical areas, and their clinical implications are discussed. For future studies, improvement of the accuracy of differential diagnosis and early detection of AD based on multimodal approaches, longitudinal studies on nonlinear dynamics of the EEG, drug effects on the EEG dynamics, and linear and nonlinear functional connectivity among cortical regions in AD are proposed to be investigated. EEG abnormalities of AD patients are characterized by slowed mean frequency, less complex activity, and reduced coherences among cortical regions. These abnormalities suggest that the EEG has utility as a valuable tool for differential and early diagnosis of AD.
Collapse
Affiliation(s)
- Jaeseung Jeong
- Center for Neurodynamics and the Department of Physics, Korea University, Sungbuk-gu, Anham-dong 5-1, Seoul 136-701, South Korea.
| |
Collapse
|
22
|
Osipova D, Ahveninen J, Kaakkola S, Jääskeläinen IP, Huttunen J, Pekkonen E. Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin Neurophysiol 2003; 114:1902-7. [PMID: 14499752 DOI: 10.1016/s1388-2457(03)00165-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Scopolamine, a muscarinic receptor antagonist, can produce temporary cognitive impairments as well as electroencephalographic changes that partially resemble those observed in Alzheimer's disease. In order to test the sensitivity of spectral power and hemispheric coherence to changes in cholinergic transmission, we evaluated quantitative magnetoencephalogram (MEG) after intravenous injection of scopolamine. METHODS MEG of 8 elderly healthy subjects (59-80 years) were measured with a whole-head magnetometer after intravenous injection of scopolamine. An injection of glycopyrrolate, a peripheral muscarinic antagonist, was used as the placebo in a double-blind, randomized, cross-over design. Spectral power and coherence were computed over 7 brain regions in 3 frequency bands. RESULTS Scopolamine administration increased theta activity (4-8 Hz) and resulted in the abnormal pattern of MEG desynchronization in eyes-open vs. eyes-closed conditions in the alpha band (8-13 Hz). These effects were most prominent over the posterior regions. Interhemispheric and left intrahemispheric coherence was significantly decreased in the theta band (4-8 Hz). CONCLUSIONS Spontaneous cortical activity at the theta and alpha range and functional coupling in the theta band are modulated by the cholinergic system. MEG may provide a tool for monitoring brain dynamics in neurological disorders associated with cholinergic abnormalities.
Collapse
Affiliation(s)
- Daria Osipova
- Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, P.O. Box 9 00014, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
Ebert U, Grossmann M, Oertel R, Gramatté T, Kirch W. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effects of scopolamine in healthy volunteers. J Clin Pharmacol 2001; 41:51-60. [PMID: 11144994 DOI: 10.1177/00912700122009836] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scopolamine is a muscarinic receptor antagonist commonly used as a pharmacological model substance based on the "cholinergic hypothesis" of memory loss in senile dementia of the Alzheimer type. The objective of the study was to relate pharmacodynamic electroencephalogram (EEG) changes and scopolamine serum concentration using pharmacokinetic-pharmacodynamic (PK-PD) modeling techniques. This was a randomized, three-way crossover, open-label study involving 10 healthy nonsmoking young male volunteers who received either scopolamine 0.5 mg as an intravenous (i.v.) infusion over 15 minutes or an intramuscular (i.m.) injection or a placebo. The pharmacodynamic EEG measure consists of the total power in delta, theta, alpha, and beta bands over frontal, central, and occipital brain areas. The values of the pharmacokinetic parameters of scopolamine after i.v. infusion were clearance (CL) 205 +/- 36.6 L/h, volume of distribution (Vd) 363 +/- 66.7 L, distribution half-life (t1/2 alpha) 2.9 +/- 0.67 min, and terminal half-life (t1/2 beta) 105.4 +/- 9.94 min (mean +/- SEM). Mean peak serum concentrations (Cmax) were 4.66 and 0.96 ng/ml after i.v. and i.m. administration, respectively (p < 0.05). The area under the serum concentration versus time curve (AUC) after i.m. administration (81.27 +/- 11.21 ng/ml/min) was significantly lower compared to the value after i.v. infusion (157.28 +/- 30.86 ng/ml/min) (mean +/- SEM, p < 0.05). Absolute bioavailability of scopolamine after i.m. injection was 57% +/- 0.08% (mean +/- SEM). After both i.v. and i.m. administration, scopolamine induced a decrease in EEG alpha power (7.50-11.25 Hz) over frontal, central, and occipital brain areas compared to placebo (p < 0.05). The individual concentration-EEG effect relationships determined after i.v. infusion of scopolamine were successfully characterized by a sigmoidal Emax model. The averaged values of the pharmacodynamic parameters were E0 = 0.58 microV2, Emax = 0.29 microV2, EC50 = 0.60 ng/ml, and gamma = 1.17. No time delay between serum concentrations and changes in alpha power was observed, indicating a rapid equilibration between serum and effect site. The results provide the first demonstration of a direct correlation between serum concentrations of scopolamine and changes in total power in alpha frequency band in healthy volunteers using PK-PD modeling techniques. As regards the effect on the EEG, 0.5 mg of scopolamine administered i.v. appears to be a suitable dose.
Collapse
Affiliation(s)
- U Ebert
- Institute of Clinical Pharmacology, Faculty of Medicine, Technical University Dresden, Fiedlerstrasse 27, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
24
|
Knott V, Engeland C, Mohr E, Mahoney C, Ilivitsky V. Acute nicotine administration in Alzheimer's disease: an exploratory EEG study. Neuropsychobiology 2000; 41:210-20. [PMID: 10828731 DOI: 10.1159/000026662] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous findings of cognitive deficits and EEG slowing in Alzheimer's patients, together with independent reports of the performance enhancing and electrocortical activating properties of nicotine in normal adults, stimulated this study to examine the acute effects of nicotine on spectrum-analyzed EEG in patients with dementia of the Alzheimer type (DAT). Thirteen patients, 6 currently receiving cholinesterase inhibitor treatment and the remaining being medication free, were administered 2 mg of nicotine polacrilex under randomized, placebo-controlled conditions. Compared to age-regressed EEG norms, the pretreatment EEG spectrums of patients in general were characterized by excessive slow (delta and theta)-wave power, diminished fast (alpha and beta)-wave power and slow mean alpha and total band frequencies. Although postnicotine EEG indices remained within the abnormal range, nicotine, compared to placebo, significantly shifted EEG towards normal values by reducing slow wave (relative delta and theta) power and augmenting fast (relative alpha-1, alpha-2, beta-1) wave power. No differences were observed between treated and nontreated patients in response to nicotine. The results are discussed in relation to cholinergic and brain arousal systems and their relationship to cognitive processes.
Collapse
Affiliation(s)
- V Knott
- Department of Psychiatry, University of Ottawa/Royal Ottawa Hospital and Institute of Mental Health Research, Ont., Canada.
| | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Memory and cognitive functions are known to decline with advancing age. Studies have suggested that this may be due to a decrease in cholinergic function in the brains of elderly people. This review aims to assess studies documented in the literature dealing with the 'scopolamine model' of dementia. METHODS Sources included MedLine searches from the last 10 years (search for 'scopolamine model', 'dementia', 'electroencephalogram', 'cognition') and references from original and review articles. The aim was to include human and animal studies occupying the cholinergic hypothesis in cognitive dysfunction. Electroencephalographic (EEG) and cognition findings were considered. RESULTS Scopolamine influences delta, theta, alpha and beta activity in EEG and partially mimics the EEG changes found in patients with senile dementia or dementia of the Alzheimer type. Effects on different cognitive functions have been extensively documented. CONCLUSION Scopolamine produces similar memory deficits seen in the elderly, but the drug cannot induce the full range of deficits seen in patients with Alzheimer's disease. Various aspects of memory were unaffected by scopolamine administration. Memory improvements in elderly subjects can be achieved after cholinergic stimulation.
Collapse
Affiliation(s)
- U Ebert
- Technical University Dresden, Dresden, Germany.
| | | |
Collapse
|
26
|
Ebert U, Siepmann M, Oertel R, Wesnes KA, Kirch W. Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 1998; 38:720-6. [PMID: 9725548 DOI: 10.1002/j.1552-4604.1998.tb04812.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of subcutaneously administered scopolamine on quantitative electroencephalogram (qEEG) and cognitive performance were evaluated and correlated with pharmacokinetic parameters in a randomized, double-blind placebo-controlled crossover study of 10 healthy male volunteers. Changes in qEEG and cognition were determined for 8 hours after drug administration. Scopolamine produced dose- and time-dependent impairments of attention and memory and a time-dependent increase in delta power (1.25-4.50 Hz) and a decrease in fast alpha power (9.75-12.50 Hz) on qEEG compared with placebo. Maximum serum concentrations of scopolamine occurred 10 to 30 minutes after drug administration. Mean peak serum concentrations (free base) were 3.27, 8.99, and 18.81 ng/mL after administration of 0.4, 0.6 mg, and 0.8 mg scopolamine, respectively. Elimination half-life was approximately 220 minutes. The findings indicate temporary changes in qEEG and psychometric tests, and support the possible use of such a testing model for impaired cognitive functions such as age-related memory disturbances.
Collapse
Affiliation(s)
- U Ebert
- Institute of Clinical Pharmacology, University of Technology, Medical School Dresden, Germany
| | | | | | | | | |
Collapse
|
27
|
Jonkman EJ. The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment. Neurophysiol Clin 1997; 27:211-9. [PMID: 9260162 DOI: 10.1016/s0987-7053(97)83777-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In a first attempt at technology assessment of the electroencephalogram (EEG) in the diagnosis of patients with Alzheimer's disease (AD), three conclusions were reached: notwithstanding the well defined clinical criteria, there remains a need for a laboratory technique to confirm the diagnosis since a 100% accuracy cannot be obtained by clinical methods only; although the EEG has a high sensitivity in separating AD patients from normal controls, the sensitivity of the EEG is at present not satisfactory when studying populations with a low prevalence of AD patients; the sensitivity of the EEG is higher or equal to the best other laboratory techniques (magnetic resonance imaging [MRI], computerized tomography [CT], SPECT, PET) available at the moment. Since the EEG and MRI can be helpful in different aspects of the differential diagnosis it is argued that all AD patients should be studied at least once by EEG as well as by MRI.
Collapse
Affiliation(s)
- E J Jonkman
- Department of Clinical Neurophysiology, Academic Hospital, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Abstract
The muscarinic receptor antagonist scopolamine produces a transient memory deficit in healthy humans. This deficit has been offered as a model of the cholinergic deficit of Alzheimer's disease (AD). However, we have previously shown that scopolamine produces a deficit of cortical perfusion maximal in the frontal lobe, dissimilar to the parietal cortex deficit characteristic of AD. The current experiment was aimed at replicating and extending this observation by critically testing the central cholinergic origin of both cognitive and perfusion deficits. Nine healthy subjects participated in regional cerebral blood flow (rCBF) measurements at baseline, after scopolamine (7.2 micrograms/kg i.v.), and after both physostigmine (22 micrograms/kg i.v.) and neostigmine (7 or 11 micrograms/kg i.v.). rCBF was quantified by the xenon 133 inhalation method. As expected, scopolamine reduced cortical perfusion, mainly in the frontal cortex, and produced a memory deficit. Physostigmine, but not neostigmine, reversed all three variables partially or completely. These results support the hypothesis that all three consequences of scopolamine, namely, reduction of mean flow, frontal deficit, and memory impairment, are cholinergically mediated. Furthermore, because neostigmine poorly crosses the blood-brain barrier, these findings confirm that the effect is centrally mediated and cannot be explained by peripheral effects. However, they also confirm the frontal cortex locus of action for both scopolamine and its reversal by physostigmine and therefore suggest a major dissimilarity to the characteristic rCBF appearance of AD. This study extends our previous preliminary findings with tacrine and strengthens the suggestion that only nicotinic receptors are associated with the characteristic parietal deficit of AD.
Collapse
Affiliation(s)
- I Prohovnik
- Department of Brain Imaging, New York State Psychiatric Institute, College of Physicians and Surgeons, Columbia University, New York, USA
| | | | | | | |
Collapse
|