1
|
Di Giorgio E, Wang L, Xiong Y, Akimova T, Christensen LM, Han R, Samanta A, Trevisanut M, Bhatti TR, Beier UH, Hancock WW. MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. J Clin Invest 2021; 130:6242-6260. [PMID: 32790649 DOI: 10.1172/jci135486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor MEF2D is important in the regulation of differentiation and adaptive responses in many cell types. We found that among T cells, MEF2D gained new functions in Foxp3+ T regulatory (Treg) cells due to its interactions with the transcription factor Foxp3 and its release from canonical partners, like histone/protein deacetylases. Though not necessary for the generation and maintenance of Tregs, MEF2D was required for the expression of IL-10, CTLA4, and Icos, and for the acquisition of an effector Treg phenotype. At these loci, MEF2D acted both synergistically and additively to Foxp3, and downstream of Blimp1. Mice with the conditional deletion in Tregs of the gene encoding MEF2D were unable to maintain long-term allograft survival despite costimulation blockade, had enhanced antitumor immunity in syngeneic models, but displayed only minor evidence of autoimmunity when maintained under normal conditions. The role played by MEF2D in sustaining effector Foxp3+ Treg functions without abrogating their basal actions suggests its suitability for drug discovery efforts in cancer therapy.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lanette M Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matteo Trevisanut
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Tricia R Bhatti
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Nonoyama T, Fullerton F, Reznik G, Bucci TJ, Ward JM. Mouse hepatoblastomas: a histologic, ultrastructural, and immunohistochemical study. Vet Pathol 1988; 25:286-96. [PMID: 2457272 DOI: 10.1177/030098588802500407] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatoblastomas from B6C3F1 and BALB/c mice were examined by light and electron microscopy and by immunohistochemical reactions for alpha-fetoprotein, keratin, and vimentin. Tumors occurred in one group of a chronic bioassay for the interaction of diet, genetic strain, and the carcinogen, 2-acetylaminofluorene. Tumors had several populations (including epithelial and mesenchymal cells) in various stages of differentiation. Neoplastic epithelial cells had features of embryonal hepatocytes, such as sparse cytoplasmic organelles, absence of glycogen, abundant free ribosomes, occasional bile canaliculi, and peroxisome-like dense bodies. Embryonal fibroblast-like cells had pleomorphic and folded nuclei with prominent perinuclear chromatin and dispersed cytoplasmic organelles. Fibroblast-like cells were surrounded by bundles of collagen fibrils. Intermediate or transitional types of cells were seen. No tumor cells were immunoreactive for mouse alpha-fetoprotein (AFP) antibody, unlike those in hepatocellular adenomas or carcinomas. Epithelial and mesenchymal tumor cells contained intermediate filaments throughout the cytoplasm; some of these cells stained for keratin but not for vimentin. These findings suggest that mouse hepatoblastomas are derived from bipotential liver blastema cells and are composed of a mixture of several cell populations.
Collapse
Affiliation(s)
- T Nonoyama
- Pathology Associates, Inc., National Center for Toxicological Research, Jefferson, AR
| | | | | | | | | |
Collapse
|