1
|
Kozakai T, Sakate M, Takizawa S, Uchide T, Kobayashi H, Oishi K, Ishida N, Saida K. Effect of feeding behavior on circadian regulation of endothelin expression in mouse colon. Life Sci 2014; 118:232-7. [PMID: 25010841 DOI: 10.1016/j.lfs.2014.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
Abstract
AIMS The function, regulation and gene expression of the endothelin (ET) system in the intestine is not well understood. We investigated the dependence on feeding schedule and biological clock of the regulation of ET-1 gene expression in mouse colon. MAIN METHODS Mice were fed freely, fasted for 48 h and re-fed after fasting. KEY FINDINGS Where indicated ET-1 gene expression was highest in the colon compared with other tissues examined in fasted mice. Fasting increased the level, while maintaining the rhythmicity, of ET-1 gene expression in epithelial colonic tissue. Re-feeding, however, decreased ET-1 gene expression and suppressed rhythmic oscillation, and the rhythmicity also changed for gene expression for circadian clocks, period-1 and period-2 (Per1 and Per2). Furthermore, the decrease in ET-1 gene expression induced by re-feeding was blocked by pre-treatment with hexamethonium and atropine. The daily change in ET-1 gene expression in colon, which depends on feeding schedule via the autonomic nervous system, is synchronized with peripheral circadian oscillators under conditions of free feeding and fasting but not re-feeding. The decrease in ET-1 gene expression in the proximal colon induced by re-feeding occurs via the nervous system. SIGNIFICANCE ET-1 plays an important physiological role, which is dependent on feeding behavior.
Collapse
Affiliation(s)
- Takaharu Kozakai
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Yamagata University, Faculty of Education, Art and Science, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| | - Mitsue Sakate
- International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Satoshi Takizawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Uchide
- Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hisato Kobayashi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Katsutaka Oishi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Norio Ishida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kaname Saida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Institute for Biomedical Research, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
2
|
Kozakai T, Sakate M, Saida K. Regulation of endothelin-1 expression and function by nutrient stress in mouse colon epithelia. Scand J Gastroenterol 2008; 43:886-94. [PMID: 18584528 DOI: 10.1080/00365520701792372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The endothelin (ET) system is influenced by a variety of stress conditions in many tissues. However, the effects of nutrient stress conditions on ET expression and its function are not well understood in the intestinal tract, while ET-1 gene expression and peptide were found in the intestinal tract. The aim of this study was to investigate the effect of feeding and fasting on the expression of ET-1 and short-circuit current (Isc) induced by ET-1 in mouse colon. MATERIAL AND METHODS Mice were fed freely, fasted for 48 h, and re-fed after fasting, respectively. ET-1 mRNA levels and peptide concentrations were analyzed using real-time polymerase chain reaction (PCR) and sandwich ELISA, respectively. Isc of epithelial tissue was measured under short-circuit conditions using a Ussing chamber. RESULTS ET-1 mRNA expression and peptide concentrations in epithelial colonic tissue were significantly increased 48 h after fasting, and decreased within 2 h of re-feeding after a 48-h fast. Furthermore, the addition of ET-1 to the serosal but not the mucosal side increased Isc in colonic epithelia. An increase in Isc was caused by chloride ion (Cl(-)) secretion because Isc induced by ET-1 was blocked by bumetanide and Cl(- -) free conditions. In addition, an increase in Isc induced by ET-1 in colon excised from fasted mice was much lower than that obtained from free-fed mice. CONCLUSIONS Gene expression, peptide concentration, and the function of ET-1 in mouse colonic epithelia are regulated by nutrient stress.
Collapse
Affiliation(s)
- Takaharu Kozakai
- National Institute of Advanced Industrial Science and Technology (AIST), Institute for Biological Resources and Functions, Ibaraki, Japan
| | | | | |
Collapse
|
3
|
Khan H, Naylor RJ, Tuladhar BR. Pharmacological characterization of endothelin receptors-mediated contraction in the mouse isolated proximal and distal colon. Br J Pharmacol 2006; 147:607-11. [PMID: 16432510 PMCID: PMC1751337 DOI: 10.1038/sj.bjp.0706657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 12/13/2005] [Indexed: 01/23/2023] Open
Abstract
The study investigated the role of endothelin (ET) and the ET receptor subtypes ET(A) and ET(B) in mediating longitudinal contraction in the mouse proximal and distal colon. Cumulative concentration-response curves to a range of ET agonists (ET-1, ET-2, ET-3, (Ala(1,3,11,13)) ET and IRL 1620) were established by administering concentrations ranging from 0.01 nM to 0.3 microM. Concentration-response curves to ET-1, which exhibits a high affinity for both ET(A) and ET(B) receptor subtypes, were also established in the presence of the ET(A) antagonist BMS 182874 and the ET(B) antagonist IRL1038. The addition of the selective ET(A) receptor antagonist BMS 182874 caused a rightward shift of the concentration-response curve to ET-1 in both sections of the colon. The ET(B) receptor antagonist IRL1038 (0.3-1 microM) did not significantly effect the response to ET-1 in the proximal colon but caused a significant decrease in response towards higher concentrations ranges (>or=3 nM) in the distal colon. A comparison of the concentration-response curves to ET-1, ET-2 and ET-3 showed a rank order of potency ET-1>or=ET-2>>ET-3 in the proximal colon and ET-1>or=ET-2>or=ET-3 in the distal colon. The selective ET(B) receptor agonists, (Ala(1,3,11,13)) ET and IRL 1620 did not produce any response in the proximal sections of the colon but produced a smaller contraction in the distal segments. The data indicate that ET can contract the proximal tissues of the mouse colon predominantly via ET(A) receptors and in the distal tissues via ET(A) and ET(B) receptors.
Collapse
Affiliation(s)
- Humaira Khan
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| | - Robert J Naylor
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| | - Bishwa R Tuladhar
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| |
Collapse
|
4
|
Endo K, Matsumoto T, Kobayashi T, Kasuya Y, Kamata K. Diabetes-related changes in contractile responses of stomach fundus to endothelin-1 in streptozotocin-induced diabetic rats. J Smooth Muscle Res 2005; 41:35-47. [PMID: 15855738 DOI: 10.1540/jsmr.41.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contractile response of the stomach fundus to endothelin-1 (ET-1) was examined in streptozotocin (STZ)-induced diabetic rats. In STZ-diabetic rats (versus age-matched control rats) (a) ET-1 caused a longer-lasting contraction of stomach fundus strips, and (b) in the dose-response curve, the ET-1-induced contraction was significantly greater for a given concentration (3 x 10(-7) to 10(-7) M). Although repeated application of ET-1 led to desensitization, the desensitization was less pronounced in STZ-diabetic rats than in the controls. The density of the binding sites for [(125)I]-ET-1 was increased in the diabetic stomach fundus (versus the controls), but Kd values were similar between the two groups. The ET(B) receptor mRNA expression level was significantly increased in the diabetic stomach fundus. These results suggest that the diabetes-related enhancement of the ET-1-induced contraction of the stomach fundus may be due to an increase in the ET(B) receptor population.
Collapse
Affiliation(s)
- Kazuki Endo
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Abstract
BACKGROUND Endothelins have been implicated in gastric mucosal damage in a variety of animal models. Exogenous ET-1 and ET-3 are causally associated with experimental gastric ulcers. Furthermore, clinical reports also show elevated plasma and gastric mucosal endothelin-1 levels in patients suffering from peptic ulcers. AIM To study the possibility that endothelin receptor antagonists may have beneficial effects and prevent the development of gastric ulcers. We have tested in rats the orally-active endothelin antagonist bosentan (Ro 47-0203) and Ro 48-5695, which is 10-30 times more potent than bosentan on endothelin receptors. METHODS Water immersion restrained stress (WIRS) and indomethacin were used to provoke gastric mucosal damage. Endothelin receptor antagonists were administered orally prior to the induction of gastric damage. The gastric lesion index (mm), assessed macroscopically, and myeloperoxidase (MPO) activity were used as markers of the extent of mucosal injury. RESULTS Bosentan at 100 and 30 mg/kg administered orally caused attenuation of gastric damage in the WIRS model by 58% and 42%, respectively. Bosentan also caused complete reduction of MPO activity. In indomethacin-induced gastric damage, 100 mg/kg bosentan attenuated gastric damage by 45% and 61% as measured by the gastric lesion index and MPO activity respectively. Ro 48-5695 was at least 30 times more potent than bosentan in reducing indomethacin-induced mucosal damage and at 3 mg/kg, caused a decrease of 49% in the gastric lesion index and a reduction in MPO activity of 41%. Bosentan and Ro 48-5695 possess weak antisecretory properties as tested in the mouse gastric gland assay, than cannot, alone, account for their anti-ulcer properties. CONCLUSIONS Both endothelin receptor antagonists prevented the development of gastric mucosal injury in the rat. Disturbances in the gastric microcirculation are responsible for the development of experimental gastric ulcers. The anti-ulcer properties of these two endothelin antagonists suggest possible new therapeutic approaches to controlling gastric inflammation.
Collapse
Affiliation(s)
- I Padol
- Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
7
|
Said SA, El-Mowafy AM. Role of endogenous endothelin-1 in stress-induced gastric mucosal damage and acid secretion in rats. REGULATORY PEPTIDES 1998; 73:43-50. [PMID: 9537672 DOI: 10.1016/s0167-0115(97)01056-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In rats subjected to 8 h water-immersion stress, gastric and duodenal mucosal hemorrhage and erosions were detected by macroscopic and histopathological examination. Moreover, plasma and gastric mucosal endothelin-1 (ET-1) levels rose appreciably in a time-related manner during water immersion, with a higher concentration detected in gastric mucosa. Thus, the percentage increases in plasma (gastric mucosal) ET-1, relative to basal levels, after 1, 4 and 8 h of water immersion were 86(172), 169(322) and 210(391)%, respectively. Likewise, a marked increase of gastric acid output was demonstrated 30 min after water immersion and lasted for 3 h. Pretreatment with the endothelin ET(A)/ET(B) receptor blocker, bosentan (30 and 100 mg kg(-1)), orally, dose-dependently antagonized gastric and duodenal mucosal damage as indicated by reductions in lesion lengths of 67 and 80%, respectively. Similar protective effects on mucosa were observed when bosentan was given by the intramuscular route. On the other hand, bosentan suppressed the rate of acid output by 30.3+/-2.1% in the stressed rats, but had no such effect in non-stressed animals. Taken together, results from this study implicate the endogenous peptide, ET-1, as a powerful mediator of stress-evoked gastro-duodenal mucosal damage and, moreover, present bosentan as a potential protector against hyperacidity and mucosal erosion that occur as a consequence of stress.
Collapse
Affiliation(s)
- S A Said
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | | |
Collapse
|
8
|
Goto K, Hama H, Kasuya Y. Molecular pharmacology and pathophysiological significance of endothelin. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:261-90. [PMID: 9015736 DOI: 10.1254/jjp.72.261] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the discovery of the most potent vasoconstrictor peptide, endothelin, in 1988, explosive investigations have rapidly clarified much of the basic pharmacological, biochemical and molecular biological features of endothelin, including the presence and structure of isopeptides and their genes (endothelin-1, -2 and -3), regulation of gene expression, intracellular processing, specific endothelin converting enzyme (ECE), receptor subtypes (ETA and ETB), intracellular signal transduction following receptor activation, etc. ECE was recently cloned, and its structure was shown to be a single transmembrane protein with a short intracellular N-terminal and a long extracellular C-terminal that contains the catalytic domain and numerous N-glycosylation sites. In addition to acute contractile or secretory actions, endothelin has been shown to exert long-term proliferative actions on many cell types. In this case, intracellular signal transduction appears to converge to activation of mitogen-activated protein kinase. As a recent dramatic advance, a number of non-peptide and orally active receptor antagonists have been developed. They, as well as current peptide antagonists, markedly accelerated the pace of investigations into the true pathophysiological roles of endogenous endothelin-1 in mature animals; e.g., hypertension, pulmonary hypertension, acute renal failure, cerebral vasospasm, vascular thickening, cardiac hypertrophy, chronic heart failure, etc. Thus, the interference with the endothelin pathway by either ECE-inhibition or receptor blockade may provide an exciting prospect for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- K Goto
- Department of Pharmacology, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
9
|
Günal O, Yeğen C, Aktan AO, Yalin R, Yeğen BC. Gastric functions in portal hypertension. Role of endothelin. Dig Dis Sci 1996; 41:585-90. [PMID: 8617140 DOI: 10.1007/bf02282345] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study investigated the effects of portal hypertension on gastric motor and secretory functions and the role of endothelin in rats. Control; sham-operated; endothelin-A receptor blocker, BQ 485 (1 microgram/kg)-treated; portal hypertensive; and portal hypertension +, endothelin-A receptor blocker-treated rats were subjected to tests of gastric secretory, motor, and mucosal function studies as well as gastric wall polymorphonuclear infiltration. Portal hypertension was induced by partial portal vein ligation. Portal hypertension suppressed gastric acid and total fluid secretion and delayed gastric emptying. An increase in mucosal permeability and no alteration in gastric wall myeloperoxidase activity were observed. The effects of portal hypertension on gastric secretory, motor, and mucosal functions were reversed by treatment with endothelin-A receptor blocker, BQ-485. It is concluded that portal hypertension suppresses the gastric motor and secretory functions and endothelin plays an important role in the pathophysiology of gastric alterations associated with portal hypertension.
Collapse
Affiliation(s)
- O Günal
- Department of General Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
10
|
Fukumura D, Kurose I, Miura S, Serizawa H, Sekizuka E, Nagata H, Tsuchiya M, Ishii H. Role of endothelin-1 in repeated electrical stimulation-induced microcirculatory disturbance and mucosal damage in rat stomach. J Gastroenterol Hepatol 1996; 11:279-85. [PMID: 8742927 DOI: 10.1111/j.1440-1746.1996.tb00076.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to clarify the involvement of endogenous endothelin in the pathogenesis of gastric mucosal damage. The rat stomach was exposed and repeated electrical stimulation (RES) was applied to the small arterial wall close to the lesser curvature. Significant mucosal haemorrhagic lesions (ulcer and erosion) were noted within 30 min after RES. Intravital microscopic observations revealed that an arteriolar constriction occurred in the submucosal layer of the rat stomach approximately 5 min after the completion of RES. Following the arteriolar constriction, the mucosal blood flow of the rat stomach, which was monitored by using a laser Doppler velocimeter, decreased to approximately 30% of the control value. The plasma immunoreactive endothelin-1 level in the regional blood of the stomach was significantly increased immediately after RES preceding the decrease in mucosal blood flow. Immunohistochemical studies revealed that endothelin-1 and big-endothelin-1 were detectable in the arteriolar endothelium around the muscularis mucosa, supporting the involvement of endothelin-1 in RES-induced mucosal ischaemia. In addition, BQ-123, a specific antagonist of the endothelin A (ETA) receptor, attenuated the reduction of blood flow and the development of haemorrhagic lesions observed in gastric mucosa subjected to RES. The results of the present study suggest that an excessive production of endothelin-1 in the arteriolar endothelium leads to microvascular derangements accompanied by haemorrhagic alterations of the gastric mucosa.
Collapse
Affiliation(s)
- D Fukumura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Allcock GH, Warner TD, Vane JR. Roles of endothelin receptors in the regional and systemic vascular responses to ET-1 in the anaesthetized ganglion-blocked rat: use of selective antagonists. Br J Pharmacol 1995; 116:2482-6. [PMID: 8581288 PMCID: PMC1909069 DOI: 10.1111/j.1476-5381.1995.tb15099.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Endothelin-1 (ET-1) produces vasoconstriction, via activation of ETA and ETB receptors on vascular smooth muscle, and vasodilatation via ETB receptors on endothelial cells. Here we have used the ETA receptor-selective antagonist, BQ-123, the ETB receptor-selective antagonist, BQ-788 and the ETA/ETB receptor non-selective antagonist, PD 145065, to study the role of these receptors in mediating the haemodynamic changes induced by an infusion of ET-1 to the anesthetized ganglion-blocked rat. 2. Infusion of ET-1 (10 pmol kg-1 min-1) increased the mean arterial pressure (MAP) by 57.5 +/- 5.1 mmHg over 70 min. This pressor response was reduced by about 50% by coinfusion of BQ-123 (10 mmol kg-1 min-1), but was unaffected by either BQ-788 (10 nmol kg-1 min-1) or PD 145065 (10 nmol kg-1 min-1). 3. After infusion of ET-1 for 70 min the cardiac output had fallen from 102.6 +/- 11.3 to 55.7 +/- 7.6 ml min-1 and the total peripheral resistance had increased from 3.24 +/- 0.6 to 10.0 +/- 0.8 mmHg ml-1 min-1 (per 100g body weight). BQ-123 decreased the magnitudes of these changes whereas BQ-788 potentiated them. PD 145065 was without effect. 4. ET-1 increased the vascular resistances of all the organs studied except the brain and stomach. These changes were attenuated by BQ-123 in the kidneys, skin, adrenal glands and caecum and potentiated by BQ-788 in the kidneys, small intestine, large intestine and mesentery. PD 145065 had little effect on the individual tissues. 5. Thus, BQ-123, a selective ETA receptor antagonist, inhibits the pressor and vascular constrictor effects of ET-1 more actively than PD 145065. As BQ-788 potentiates some of the vasoconstrictor effects of ET-1 and increases the effects of ET-1 on total peripheral resistance, the predominant role of ETB receptors in the rat circulation is to limit the pressor effects of ET-1.
Collapse
Affiliation(s)
- G H Allcock
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London
| | | | | |
Collapse
|
12
|
Kajita H, Kotera T, Shirakata Y, Ueda S, Okuma M, Oda-Ohmae K, Takimoto M, Urade Y, Okada Y. A maxi Cl- channel coupled to endothelin B receptors in the basolateral membrane of guinea-pig parietal cells. J Physiol 1995; 488 ( Pt 1):65-75. [PMID: 8568666 PMCID: PMC1156701 DOI: 10.1113/jphysiol.1995.sp020946] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. To study endothelin (ET) receptors in guinea-pig stomach, ET-binding assays and in vitro autoradiography were performed on fundic cell suspensions and on sections of the fundus, respectively. ETA and ETB receptor subtypes were found to coexist in the parietal cells. 2. Endothelin 1 (ET-1) added to the (basolateral) bathing solution was found to activate noisy whole-cell Cl- currents within about 1 min in both single, isolated parietal cells and those within gastric glands obtained from the fundus. 3. ET-1-induced Cl- currents were rapidly blocked by a Cl- channel blocker (NPPB) added to the (basolateral) bathing solution in a concentration-dependent manner with a half-maximum inhibition concentration of 33 microM. 4. The anion selectivity sequence of the ET-1-induced conductance was I- > Br- > Cl- > F-, corresponding to Eisenman's sequence I. 5. Changes in extracellular pH between 5 and 8 did not affect the ET-1-induced activation of Cl- currents. 6. Similar activating effects were also observed with ET-3 and a specific ETB receptor agonist (IRL1620). An ETB receptor antagonist (IRL1720) prevented the ET-1 effect, whereas an ETA-selective antagonist (FR139317 or BQ123) failed to antagonize the ET-1 effect. 7. In the whole-cell mode, unitary Cl- channel events could be observed in association with ET-1-activated macroscopic currents. The single-channel conductances were around 200 and 350 pS at negative and positive membrane potentials, respectively. 8. It is concluded that gastric parietal cells of guinea-pig possess pH-insensitive 'maxi' Cl- channels coupled to ETB receptors in the basolateral membrane.
Collapse
Affiliation(s)
- H Kajita
- Department of Internal Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rae GA, Calixto JB, D'Orléans-Juste P. Effects and mechanisms of action of endothelins on non-vascular smooth muscle of the respiratory, gastrointestinal and urogenital tracts. REGULATORY PEPTIDES 1995; 55:1-46. [PMID: 7724825 DOI: 10.1016/0167-0115(94)00098-i] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G A Rae
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
14
|
Endoh K, Leung FW. Effects of smoking and nicotine on the gastric mucosa: a review of clinical and experimental evidence. Gastroenterology 1994; 107:864-78. [PMID: 7915701 DOI: 10.1016/0016-5085(94)90138-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epidemiological and experimental evidence have shown that nicotine has harmful effects on the gastric mucosa. The mechanisms by which cigarette smoking or nicotine adversely affect the gastric mucosa have not been fully elucidated. In this report, clinical and experimental data are reviewed. The effects of nicotine from smoking on gastric aggressive or defensive factors are discussed. Nicotine potentiates gastric aggressive factors and attenuates defensive factors; it also increases acid and pepsin secretions, gastric motility, duodenogastric reflux of bile salts, the risk of Helicobacter pylori infection, levels of free radicals, and platelet-activating factor, endothelin generation, and vasopressin secretion. Additionally, nicotine impairs the therapeutic effect of H2-receptor antagonists and decreases prostaglandin synthesis, gastric mucosal blood flow, mucus secretion, and epidermal growth factor secretion. Although many of the studies provide conflicting results, the bulk of the evidence supports the hypothesis that nicotine is harmful to the gastric mucosa.
Collapse
Affiliation(s)
- K Endoh
- First Department of Internal Medicine, Nagoya City University Medical School, Japan
| | | |
Collapse
|
15
|
Chapter 7. Small Molecule Endothelin Receptor Antagonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
16
|
Abstract
The pathogenetic mechanisms of different types of peptic ulcer are still unclear. Extensive investigations have been focused on the identification of potential endogenous ulcerogenic mediators in animals and men. These studies are important in the development of a better therapeutic agent, either to prevent or to cure peptic ulcer in humans. Several endogenous substances have been identified and are reported to be involved in the production of gastrointestinal lesions in animals. Also these substances were increased during inflammatory responses and their actions were reported as vascular dependent and possibly free radicals related. Reports related to the types of these mediators have been extensive. The more important ones include some of the lipid metabolites, neuropeptides, biogenic amines, and also Helicobacter pylori and reactive free radicals. The present study summarizes the ulcerogenic mechanisms of these substances and the types of ulcer involved. More current information may enable us to understand better the etiology of peptic ulcer and possibly its prevention and cure in man. Any particular types of ulceration will not be specifically discussed in this article, because they have been extensively studied and reviewed.
Collapse
Affiliation(s)
- C H Cho
- Department of Pharmacology, Faculty of Medicine, University of Hong Kong
| |
Collapse
|
17
|
Kurose I, Miura S, Fukumura D, Tsuchiya M. Mechanisms of endothelin-induced macromolecular leakage in microvascular beds of rat mesentery. Eur J Pharmacol 1993; 250:85-94. [PMID: 8119327 DOI: 10.1016/0014-2999(93)90624-q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microvascular responses to endothelin-3 were investigated in the rat mesentery under fluorescence microscopy. Endothelin-3 in a range of 0.1-100 pM induced arteriolar constriction in a dose-dependent manner, and stimulated Ca2+ mobilization, demonstrated by fura-2-associated fluorography, in both arterioles and venules. Cyclo(-D-Trp-D-Asp-Pro-D-Val-Leu-) (BQ123), and endothelin ETA receptor antagonist, at a concentration of 10 microM inhibited the endothelin-3 (100 pM)-induced arteriolar constriction and Ca2+ mobilization in arterioles but not in venules. In venules, an early onset leakage of FITC (fluorescein isothiocyanate)-labeled albumin and subsequent reduction of red blood cell velocity without arteriolar constriction were observed after the superfusion of endothelin-3 with BQ123, suggesting that a non-endothelin ETA receptor mediates macromolecular leakage followed by a decrease in blood flow. Endothelin-3 with BQ123 neither stimulated leukocyte adhesion nor activated luminol-dependent chemiluminescence in venules, showing that endothelin-3-increased permeability may be induced by leukocyte-independent and oxyradical-independent mechanisms. These microvascular alterations of permeability and red blood cell velocity were significantly attenuated by the addition of phalloidin, an F-actin stabilizer, suggesting the involvement of endothelial cell contraction. Nicardipine (1,4-dihydro-2,6-dimethyl-4-[3-nitrophenyl]methyl-2- [methyl(phenylmethyl)amino]-3,5-pyridinedicarboxylic acid ethyl ester), a dihydropyridine-type Ca2+ channel antagonist, eliminated endothelin-3-induced arteriolar constriction; however, it did not affect albumin leakage promoted by endothelin-3 with BQ123, suggesting that a non-voltage-dependent Ca2+ channel(s) is involved in non-endothelin ETA receptor-mediated Ca2+ mobilization and contraction of venular endothelial cells. Overall, it is conceivable that endothelin ETA receptor and voltage-dependent Ca2+ channel are involved in endothelin-3-induced arteriolar constriction. In addition, the present results suggest that Ca2+ mobilization in venular endothelium, which is mediated by a non-endothelin ETA receptor, possibly endothelin ETB receptor and regulated by non-voltage-dependent Ca2+ channel(s), may cause endothelial cell contraction and subsequently increase macromolecular permeability in microvascular beds treated with endothelin-3.
Collapse
Affiliation(s)
- I Kurose
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Whittle BJ. Thirteenth Gaddum Memorial Lecture. Neuronal and endothelium-derived mediators in the modulation of the gastric microcirculation: integrity in the balance. Br J Pharmacol 1993; 110:3-17. [PMID: 8220892 PMCID: PMC2175995 DOI: 10.1111/j.1476-5381.1993.tb13763.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- B J Whittle
- Department of Pharmacology, Wellcome Research Laboratories, Beckenham, Kent
| |
Collapse
|
19
|
Endothelin receptor ligands. replacement net approach to SAR determination of potent hexapeptides. Bioorg Med Chem Lett 1993. [DOI: 10.1016/s0960-894x(01)81219-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
D'Orléans-Juste P, Télémaque S, Claing A. Different pharmacological profiles of big-endothelin-3 and big-endothelin-1 in vivo and in vitro. Br J Pharmacol 1991; 104:440-4. [PMID: 1797310 PMCID: PMC1908550 DOI: 10.1111/j.1476-5381.1991.tb12448.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Human big-endothelin-1 (big-ET-1) and endothelin-1 (ET-1) are equipotent as pressor agents and produce a significant change in mean arterial blood pressure (MAP) in anaesthetized guinea-pigs (2 nmol kg-1: peak delta MAP: 23 +/- 6 mmHg and 26 +/- 5 mmHg, respectively). 2. Unlike big-ET-1, big-endothelin-3 (big-ET-3) (10 and 20 nmol kg-1) induces no pressor responses whereas endothelin-3 (ET-3) at 2 nmol kg-1 induces a significant increase of blood pressure in anaesthetized guinea-pigs (peak delta MAP: 27 +/- 5 mmHg) with a shorter duration than ET-1 and big-ET-1. 3. Big-ET-1 at concentrations 40 times higher than those required for ET-1 (2.5 nM) releases prostacyclin (PGI2) (maximal release: 2.7 +/- 0.8 ng ml-1; 2.9 +/- 0.9 ng ml-1, respectively) and thromboxane B2 (TxB2) (maximal release: 6.7 +/- 1.3 ng ml-1; 6.8 +/- 1.1 ng ml-1, respectively) from guinea-pig perfused lungs. ET-3 (2.5 nM) is also a potent releaser of PGI2 and TxB2 from the guinea-pig lungs (maximal release: PGI2: 2.4 +/- 1.0 ng ml-1; TxB2: 3.8 +/- 0.6 ng ml-1). Conversely, big-ET-3 (100 nM) does not increase basal release of eicosanoids. 4. Phosphoramidon (50 microM), a metalloprotease inhibitor, markedly reduced the eicosanoid releasing properties of big-ET-1 (n = 4, P less than 0.01) in guinea-pig perfused lungs without affecting the release stimulated by ET-1. 5. Our results suggest that big-ET-1 is converted to ET-1 via a phosphoramidon-sensitive endothelin converting enzyme (ECE) to release eicosanoids. The ECE is present in the guinea-pig pulmonary vasculature. Furthermore, our results suggest that the ECE activity is specific for big-ET-1 and may not convert big-ET-3 to its active metabolite, ET-3.
Collapse
Affiliation(s)
- P D'Orléans-Juste
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | |
Collapse
|
21
|
Yeh YC, Burns ER, Yeh J, Yeh HW. Synergistic effects of endothelin-1 (ET-1) and transforming growth factor alpha (TGF-alpha) or epidermal growth factor (EGF) on DNA replication and G1 to S phase transition. Biosci Rep 1991; 11:171-80. [PMID: 1958812 DOI: 10.1007/bf01182486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cooperative cell kinetic actions of ET-1 with TGF-alpha or EGF in normal rat kidney fibroblasts (NRK-49F) and KNRK cells (Kirsten MSV transformed) were analyzed by [3H]-thymidine incorporation assay and flow cytometry. A marked synergistic effect of TGF-alpha and ET-1 (or EGF and ET-1) on DNA synthesis and G1 to S transition was observed in NRK cells; 15-20% S for TGF-alpha and 12% S for ET-1 alone but 45-50% S in combination. There was no detectable effect on cell cycle kinetics by TGF-alpha (1 ng/ml) or EGF (1 ng/ml) plus ET-1 (1 ng/ml) in KNRK cells treated for 22 hours. Insulin, insulin-like growth factor I (IGF-I), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and transforming growth factor beta (TGF-beta) were also tested and found to have no significant synergistic effects on ET-1 actions. Our findings suggest that the combination of TGF-alpha (EGF) and ET-1 is an important part of an intricate network which coordinates progression of G1 to S phase in normal cells.
Collapse
Affiliation(s)
- Y C Yeh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock 72205
| | | | | | | |
Collapse
|
22
|
Takuwa Y, Masaki T, Yamashita K. The effects of the endothelin family peptides on cultured osteoblastic cells from rat calvariae. Biochem Biophys Res Commun 1990; 170:998-1005. [PMID: 2202304 DOI: 10.1016/0006-291x(90)90491-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The activities of three isoforms of the endothelin (ET) family peptides, ET-1, ET-2 and ET-3, were studied in cultured osteoblastic cells from neonatal rat calvariae. All three isoforms induce stimulation of DNA synthesis and reductions in cellular alkaline phosphatase activity in a dose-dependent manner with the rank order of potency: ET-1 congruent to ET-2 greater than ET-3. The 125I-labeled ET binding and affinity-cross linking experiments show the presence of a single class of the ET binding sites with a more than 10-fold higher affinity for ET-1 and ET-2 as compared to ET-3. The endothelins dose-dependently stimulate the production of inositol phosphates and induce mobilization of Ca2+ with the similar relative potency to that for the receptor binding. These results indicate that osteoblastic cells possess the endothelin receptor with a high affinity for ET-1 and ET-2 that is coupled to phospholipase C, and that the endothelins modulate cellular functions via this receptor.
Collapse
Affiliation(s)
- Y Takuwa
- Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|