1
|
de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005; 526:125-39. [PMID: 16310183 DOI: 10.1016/j.ejphar.2005.09.065] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/01/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the predisposition for and execution of aggressive behavior. The dogmatic view that 5-HT inhibits aggression has dominated both pharmacological research strategies to develop specific and effective novel drug treatments that reduce aggressive behavior and the pharmacological mechanistic interpretation of putative serenic drug effects. Our studies on brain serotonin and aggression in feral wild-type rats using the resident-intruder paradigm have challenged this so-called serotonin deficiency hypothesis of aggressive behavior. The well-known fact that certain 5-HT(1A/1B) receptor agonists potently and specifically reduce aggressive behavior without motor slowing and sedative effects is only consistent with this hypothesis under the assumption that the agonist mainly acts on the postsynaptic 5-HT(1A/1B) receptor sites. However, systemic injections of anti-aggressive doses of 5-HT(1A) and (1B) agonists robustly decrease brain 5-HT release due to their inhibitory actions at somatodendritic and terminal autoreceptors, respectively. The availability of the novel benzodioxopiperazine compound S-15535, which acts in vivo as a preferential agonist of the somatodendritic 5-HT(1A) auto-receptor and as an antagonist (weak partial agonist) at postsynaptic 5-HT(1A) receptors, allows for a pharmacological analysis of the exact site of action of this anti-aggressive effect. It was found that, similar to other prototypical full and partial 5-HT(1A) and/or 5-HT(1B) receptor agonists like repinotan, 8-OHDPAT, ipsapirone, buspirone, alnespirone, eltoprazine, CGS-12066B and CP-93129, also S-15535 very effectively reduced offensive aggressive behavior. Unlike the other ligands, however, a remarkable degree of behavioral specificity was observed after treatment with S-15535, in that the anti-aggressive effects were not accompanied by inhibiting (like other 5-HT(1A) receptor agonist with moderate to high efficacy at postsynaptic 5-HT(1A) receptors) or enhancing (like agonists with activity at 5-HT(1B) receptors and alnespirone) non-aggressive motor behaviors (e.g., social exploration, ambulation, rearing, and grooming) beyond the range of undrugged animals with corresponding levels of aggression. The involvement of 5-HT(1A) and/or 5-HT(1B) receptors in the anti-aggressive actions of these drugs was convincingly confirmed by showing that the selective 5-HT(1A) receptor antagonist WAY-100635 and/or the 5-HT(1B) receptor antagonist GR-127935, while inactive when given alone, effectively attenuated/prevented these actions. Furthermore, combined administration of S-15535 with either alnespirone or CGS-42066B elicited a clear additive effect, indicated by a left-ward shift in their dose-effect curves, providing further support for presynaptic sites of action (i.e., inhibitory somatodendritic 5-HT(1A) and terminal 5-HT(1B) autoreceptors). These findings strongly suggest that the specific anti-aggressive effects of 5-HT(1A) and 5-HT(1B) receptor agonists are predominantly based on reduction rather than enhancement of 5-HT neurotransmission during the combative social interaction. Apparently, normal display of offensive aggressive behavior is positively related to brief spikes in serotonergic activity, whereas an inverse relationship probably exists between tonic 5-HT activity and abnormal forms of aggression only.
Collapse
Affiliation(s)
- Sietse F de Boer
- Department of Behavioral Physiology, Biological Center, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
2
|
5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 2001. [PMID: 11331386 DOI: 10.1523/jneurosci.21-10-03572.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 5-HT(2A/2C) agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI) stimulates hypothalamic neurons to increase the secretion of several hormones. This study addressed two questions: 1) are the neuroendocrine effects of DOI mediated via activation of 5-HT(2A) receptors; and 2) which neurons are activated by 5-HT(2A) receptors. The 5-HT(2A) antagonist (+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol (MDL 100,907; 0.001, 0.01, or 0.1 mg/kg, s.c.) was administered before rats were challenged with DOI (2.5 mg/kg, i.p.). MDL 100,907 produced a dose-dependent inhibition (ED(50) congruent with 0.001 mg/kg) of the effect of DOI on plasma levels of ACTH, corticosterone, oxytocin, prolactin, and renin without altering basal hormone levels. Complete blockade of the effect of DOI was achieved for all hormones at MDL 100,907 doses of 0.01-0.1 mg/kg. In a parallel experiment, DOI was injected 2 hr before killing to determine its effects on the expression of Fos, the product of the immediate early gene c-fos. DOI induced an increase in Fos immunoreactivity in corticotropin-releasing factor (CRF) and in oxytocin-expressing neurons but not in vasopressin-containing neurons in the hypothalamic paraventricular nucleus or CRF cells in the amygdala. Pretreatment with MDL 100,907 (0.1 mg/kg, s.c.) blocked the DOI-induced increase in Fos expression in all regions including the hypothalamus, amygdala (central and corticomedial), bed nucleus of the stria terminalis, and prefrontal cortical regions. The combined neuroanatomical and pharmacological observations suggest that the neuroendocrine responses to DOI are mediated by activation of neurons in the hypothalamic paraventricular nucleus and associated circuitry. Furthermore, selective activation of 5-HT(2A) receptors mediates the hormonal and Fos-inducing effects of DOI.
Collapse
|
3
|
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are effective drugs for the treatment of several neuropsychiatric disorders associated with reduced serotonergic function. Serotonergic neurons play an important role in the regulation of neuroendocrine function. This review will discuss the acute and chronic effects of SSRIs on neuroendocrine function. Acute administration of SSRIs increases the secretion of several hormones, but chronic treatment with SSRIs does not alter basal blood levels of hormones. However, adaptive changes are induced by long-term treatment with SSRIs in serotonergic, noradrenergic and peptidergic neural function. These adaptive changes, particularly in the function of specific post-synaptic receptor systems, can be examined from altered adrenocorticotrophic hormone (ACTH), cortisol, oxytocin, vasopressin, prolactin, growth hormone (GH) and renin responses to challenges with specific agonists. Neuroendocrine challenge tests both in experimental animals and in humans indicate that chronic SSRIs produce an increase in serotonergic terminal function, accompanied by desensitization of post-synaptic 5-HT1A receptor-mediated ACTH, cortisol, GH and oxytocin responses, and by supersensitivity of post-synaptic 5-HT2A (and/or 5-HT2C) receptor-mediated secretion of hormones. Chronic exposure to SSRIs does not alter the neuroendocrine stress-response and produces inconsistent changes in alpha2 adrenoceptor-mediated GH secretion. Overall, the effects of SSRIs on neuroendocrine function are dependent on adaptive changes in specific neurotransmitter systems that regulate the secretion of specific hormones.
Collapse
Affiliation(s)
- D K Raap
- Department of Pharmacology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
4
|
Muñoz C, Papp M. Alnespirone (S 20499), an agonist of 5-HT1A receptors, and imipramine have similar activity in a chronic mild stress model of depression. Pharmacol Biochem Behav 1999; 63:647-53. [PMID: 10462194 DOI: 10.1016/s0091-3057(99)00031-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A chronic mild stress (CMS) model of depression was used to study an antidepressant-like activity of alnespirone (S 20499), a selective agonist of 5-HT1A receptors. In this model, a substantial decrease in consumption of a palatable sucrose solution over time is observed in rats subjected to a variety of mild stressors. This effect can be reversed by chronic administration of various classes of antidepressant drugs. Chronic (5 weeks) treatment with alnespirone, in a dose range between 1-5 mg/kg/day, gradually and dose dependently reversed the CMS-induced reductions in sucrose consumption without any significant effects in the non-stressed control animals. The onset of action of the most active doses (2.5 and 5 mg/kg/day) and the overall efficacy of alnespirone in the CMS model were comparable to those observed following similar administration of imipramine (10 mg/kg/ day). At the lower (0.5 mg/kg/day) and higher (10 and 20 mg/kg/day) doses, alnespirone was ineffective against the CMS-induced deficit in sucrose consumption. These data provide further support for previous suggestions, based on both the clinical observations and animal data, that agonism at 5-HT1A receptors may result in antidepressant action.
Collapse
Affiliation(s)
- C Muñoz
- I.R.I.S., Courbevoie, France
| | | |
Collapse
|
5
|
Protais P, Lesourd M, Comoy E. Similar pharmacological properties of 8-OH-DPAT and alnespirone (S 20499) at dopamine receptors: comparison with buspirone. Eur J Pharmacol 1998; 352:179-87. [PMID: 9716353 DOI: 10.1016/s0014-2999(98)00361-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alnespirone (S 20499) has previously been described as a potential anxiolytic drug that acts by stimulation of 5-HT1A receptors. Some data suggest that alnespirone might also be a weak dopamine D2 receptor agonist: it displays moderate affinity for dopamine D2 receptors in vitro and it inhibits prolactin release and induces yawning in rats. In order to test for possible interactions of alnespirone with dopamine receptors in vivo, we studied the changes of in vivo striatal [3H]SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benza zepine) and [3H]raclopride binding following the injection of a tracer dose of either tritiated ligand (4 microCi) in mice treated with increasing doses of alnespirone (5, 10, 20 and 40 mg/kg, i.p.) and, in the same animals, the changes in the levels of dopamine, 5-hydroxytryptamine (5-HT) and their metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA). These changes were compared with those produced by increasing doses of the reference 5-HT1A receptor agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin, 0.25, 1 and 4 mg/kg, i.p.) or buspirone (5 and 20 mg/kg, i.p.). Decreased in vivo striatal [3H]SCH 23390 specific binding was observed in mice treated with 5, 10 and 40 mg/kg alnespirone. In contrast, increased in vivo striatal [3H]raclopride specific binding was observed in mice treated with 5 and 20 mg/kg alnespirone. In these animals, the striatal 5-HIAA/5-HT ratio was decreased by 5 to 40 mg/kg alnespirone, whereas the striatal HVA/DA ratio was unaffected at all tested doses of alnespirone. Similarly, 8-OH-DPAT decreased specific in vivo striatal [3H]SCH 23390 binding at 0.25, 1 and 4 mg/kg, and increased in vivo specific striatal [3H]raclopride binding at 1 and 4 mg/kg. In the same animals, all tested doses of 8-OH-DPAT decreased the striatal 5-HIAA/5-HT ratio but did not modify the striatal HVA/dopamine ratio. Buspirone (5 and 20 mg/kg) completely inhibited in vivo specific striatal [3H]raclopride binding and increased the striatal HVA/DA ratio but did not modify the striatal 5-HIAA/5-HT ratio, whereas apomorphine (3 mg/kg) decreased both in vivo specific striatal [3H]SCH 23390 and [3H]raclopride binding as well as the striatal HVA/DA and 5-HIAA/5-HT ratios. Finally, increasing doses of alnespirone or 8-OH-DPAT weakly increased sniffing induced by apomorphine (0.75 mg/kg, s.c.) in mice and decreased grooming induced by the dopamine D1 receptor agonist SK&F 39393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol, 1.87 mg/kg, s.c.), whereas buspirone decreased both apomorphine-induced sniffing and SK&F 39393-induced grooming. These results indicate that alnespirone and 8-OH-DPAT have a similar profile and do not seem to interact directly with dopamine receptors. The results also suggest that the stimulation of 5-HT1A receptors by either alnespirone or 8-OH-DPAT modulates the availability of striatal [3H]SCH 23390 and [3H]raclopride binding sites and possibly the functioning of striatal dopamine D1 and D2 receptors in opposite directions.
Collapse
Affiliation(s)
- P Protais
- Laboratoire de Physiologie (VACOMED), U.F.R. de Médecine-Pharmacie de Rouen, Saint Etienne Rouvray, France.
| | | | | |
Collapse
|
6
|
Dugast C, Soulière F, Schmitt P, Casanovas JM, Fattaccini CM, Mocaër E, Lesourd M, Renaud B, Artigas F, Hamon M, Chouvet G. Is the potent 5-HT1A receptor agonist, alnespirone (S-20499), affecting dopaminergic systems in the rat brain? Eur J Pharmacol 1998; 350:171-80. [PMID: 9696405 DOI: 10.1016/s0014-2999(98)00254-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of the new methoxy-chroman 5-HT1A receptor agonist, alnespirone (S-20499), on the dopamine systems in the rat brain were assessed in vivo by means of electrophysiological and neurochemical techniques. Cumulative doses of alnespirone (0.032-4.1 mg kg(-1), i.v.) did not modify the spontaneous firing rate of dopamine neurons in the substantia nigra as well as in the ventral tegmental area. The local application of alnespirone (0.1-10 microM) by reverse microdialysis into the dorsal striatum did not affect the dopamine output but induced a moderate, although dose-independent, increase of 5-HT (5-hydroxytryptamine, serotonin) concentrations in the dialysate. As expected of a 5-HT1A receptor agonist, intraperitoneal (i.p.) administration of alnespirone at 2-32 mg kg(-1) markedly decreased 5-HT turnover in the striatum. Parallel measurements of dopamine turnover showed that alnespirone exerted no effect except at the highest dose (32 mg kg(-1), i.p.) for which a significant increase was observed. Interestingly, both alnespirone-induced reduction in 5-HT turnover and increase in dopamine turnover could be prevented by pretreatment with the selective 5-HT1A receptor antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexa ne carboxamide). Altogether, these data indicate that alnespirone does not exert any direct influence on central dopamine systems. The enhanced dopamine turnover due to alnespirone at high dose appeared to result from 5-HT1A receptor stimulation, further supporting the idea that this receptor type may play a key role in 5-HT-dopamine interactions in brain.
Collapse
Affiliation(s)
- C Dugast
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM CJF 95-06, Université Claude Bernard-Lyon-1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vicentic A, Li Q, Battaglia G, Van de Kar LD. WAY-100635 inhibits 8-OH-DPAT-stimulated oxytocin, ACTH and corticosterone, but not prolactin secretion. Eur J Pharmacol 1998; 346:261-6. [PMID: 9652368 DOI: 10.1016/s0014-2999(97)01607-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies suggest that the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) increases the secretion of oxytocin, adrenocorticotropic hormone (ACTH), corticosterone and prolactin but not renin. However, the lack of selective 5-HT1A receptor antagonists made it difficult to confirm that 5-HT1A receptors mediate the neuroendocrine responses to 8-OH-DPAT. This study investigated the effects of increasing doses of a selective 5-HT1A receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide (WAY-100635) on neuroendocrine responses induced by the 5-HT1A receptor agonist 8-OH-DPAT in adult male rats. 8-OH-DPAT, 500 microg/kg s.c., increased plasma levels of oxytocin (to 970% above basal levels); ACTH (to 1622% above basal levels), corticosterone (to 458% above basal levels) and prolactin (to 313% above basal levels), but not renin. The lowest dose of WAY-100635 (0.1 mg/kg s.c.) significantly inhibited the 8-OH-DPAT-induced increase in plasma oxytocin but not ACTH or corticosterone levels. At a dose of 1 mg/kg (s.c.), WAY-100635 completely blocked the oxytocin and ACTH responses and maximally inhibited the corticosterone response to 8-OH-DPAT, although corticosterone levels were still above basal. In contrast, the increase in prolactin secretion, induced by 8-OH-DPAT was not inhibited by any dose of WAY-100635. At the highest dose of WAY-100635 (10 mg/kg, s.c.), basal prolactin levels were markedly elevated (1550%) and administration of 8-OH-DPAT significantly elevated plasma renin concentration. Taken together, these data indicate that: (1) 8-OH-DPAT stimulates oxytocin, ACTH, and corticosterone but not prolactin secretion via activation of 5-HT1A receptors and (2) blockade of 5-HT1A receptors may unmask 8-OH-DPAT simulation of renin secretion via non-5-HT1A receptor mechanisms.
Collapse
Affiliation(s)
- A Vicentic
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Cocaine use has been shown to increase the risk of HIV infection in humans, and this increased risk cannot be explained by i.v. drug use alone. It is thought that this increased susceptibility may be a result of decreased immune responsiveness in cocaine addicts. Scientists are now using animal models to study the effects of cocaine on immune function in vivo under controlled conditions. Many facets of the immune system are being examined, which include immune cell number and distribution, cellular- and humoral-mediated immunity, cytokine production, and immunocompetence to challenges such as infection and tumor growth. The effects of cocaine on many of these functions are not yet clear. Often there are variations in the response of the immune system to cocaine. Potential confounding factors include variations in dose, duration of treatment, and route of administration of cocaine, as well as variations in assay protocols. In addition, there appear to be species differences in immune responses to cocaine. Although it is clear that more research is necessary to resolve the discrepancies, a sufficient number of trends are starting to emerge. This review will systematically evaluate the reported effects of cocaine on immune cell function in vivo. In addition, the possible mechanisms that may be contributing to the immune modulation observed with cocaine in vivo will be addressed. Further, data will be presented describing the effects of cocaine on the autonomic nervous system and the neuroendocrine system suggesting that inhibition of serotonin uptake may be an important component of the overall effects of cocaine on the immune system.
Collapse
Affiliation(s)
- T Pellegrino
- Georgetown University Medical Center, Department of Pharmacology, Washington, DC 20007, USA
| | | |
Collapse
|
9
|
Corradetti R, Laaris N, Hanoun N, Laporte AM, Le Poul E, Hamon M, Lanfumey L. Antagonist properties of (-)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. Br J Pharmacol 1998; 123:449-62. [PMID: 9504386 PMCID: PMC1565192 DOI: 10.1038/sj.bjp.0701632] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The aim of the present work was to characterize the 5-hydroxytryptamine1A (5-HT1A) antagonistic actions of (-)-pindolol and WAY 100635 (N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide). Studies were performed on 5-HT1A receptors located on 5-hydroxytryptaminergic neurones in the dorsal raphe nucleus (DRN) and on pyramidal cells in the CA1 and CA3 regions of the hippocampus in rat brain slices. 2. Intracellular electrophysiological recording of CA1 pyramidal cells and 5-hydroxytryptaminergic DRN neurones showed that the 5-HT1A receptor agonist 5-carboxamidotryptamine (5-CT) evoked in both cell types a concentration-dependent cell membrane hyperpolarization and a decrease in cell input resistance. On its own, (-)-pindolol did not modify the cell membrane potential and resistance at concentrations up to 10 microM, but it antagonized the 5-CT effects in a concentration-dependent manner. Similar antagonism of 5-CT effects was observed in the CA3 hippocampal region. (-)-Pindolol also prevented the 5-HT1A receptor-mediated hyperpolarization of CA1 pyramidal cells due to 5-HT (15 microM). In contrast, the 5-HT-induced depolarization mediated by presumed 5-HT4 receptors persisted in the presence of 3 microM (-)-pindolol. 3. In the hippocampus, (-)-pindolol completely prevented the hyperpolarization of CA1 pyramidal cells by 100 nM 5-CT (IC50=92 nM; apparent KB=20.1 nM), and of CA3 neurones by 300 nM 5-CT (IC50=522 nM; apparent KB= 115.1 nM). The block by (-)-pindolol was surmounted by increasing the concentration of 5-CT, indicating a reversible and competitive antagonistic action. 4. Extracellular recording of the firing rate of 5-hydroxytryptaminergic neurones in the DRN showed that (-)-pindolol blocked, in a concentration-dependent manner, the decrease in firing elicited by 100 nM 5-CT (IC50=598 nM; apparent KB= 131.7 nM) or 100 nM ipsapirone (IC50= 132.5 nM; apparent KB= 124.9 nM). The effect of (-)-pindolol was surmountable by increasing the concentration of the agonist. Intracellular recording experiments showed that 10 microM (-)-pindolol were required to antagonize completely the hyperpolarizing effect of 100 nM 5-CT. 5. In vivo labelling of brain 5-HT1A receptors by i.v. administration of [3H]-WAY 100635 ([O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1 -piperazinyl)ethyl-N-(2-pyridyl)cyclo-hexane-carboxamide) was used to assess their occupancy following in vivo treatment with (-)-pindolol. (-)-Pindolol (15 mg kg[-1]) injected i.p. either subchronically (2 day-treatment before i.v. injection of [3H]-WAY 100635) or acutely (20 min before i.v. injection of [3H]-WAY 100635) markedly reduced [3H]-WAY 100635 accumulation in all 5-HT1A receptor-containing brain areas. In particular, no differences were observed in the capacity of (-)-pindolol to prevent [3H]-WAY 100635 accumulation in the DRN and the CAI and CA3 hippocampal areas. 6. Intracellular electrophysiological recording of 5-hydroxytryptaminergic DRN neurones showed that WAY 100635 prevented the hyperpolarizing effect of 100 nM 5-CT in a concentration-dependent manner (IC50=4.9 nM, apparent KB=0.25 nM). In CA1 pyramidal cells, hyperpolarization induced by 50 nM 5-CT was also antagonized by WAY 100635 (IC50 = 0.80 nM, apparent KB= 0.28 nM).
Collapse
Affiliation(s)
- R Corradetti
- NeuroPsychoPharmacologie, INSERM U 288, CHU Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|