Alleti R, Rao V, Xu L, Gillies RJ, Mash EA. A solanesol-derived scaffold for multimerization of bioactive peptides.
J Org Chem 2010;
75:5895-903. [PMID:
20701315 DOI:
10.1021/jo101043m]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A flexible molecular scaffold bearing varying numbers of terminal alkyne groups was synthesized in five steps from solanesol. R(CO)-MSH(4)-NH(2) ligands, which have a relatively low affinity for binding at the human melanocortin 4 receptor (hMC4R), were prepared by solid phase synthesis and were N-terminally acylated with 6-azidohexanoic acid. Multiple copies of the azide N(3)(CH(2))(5)(CO)-MSH(4)-NH(2) were attached to the alkyne-bearing, solanesol-derived molecular scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Control studies showed that the binding affinity of the triazole-containing ligand, CH(3)(CH(2))(3)(C(2)N(3))(CH(2))(5)(CO)-MSH(4)-NH(2), was not significantly diminished relative to the corresponding parental ligand, CH(3)(CO)-MSH(4)-NH(2). In a competitive binding assay with a Eu-labeled probe based on the superpotent ligand NDP-alpha-MSH, the monovalent and multivalent constructs appear to bind to hMC4R as monovalent species. In a similar assay with a Eu-labeled probe based on MSH(4), modest increases in binding potency with increased MSH(4) content per scaffold were observed.
Collapse