1
|
Ortiz R, Koh D, Kim DH, Rabbani MT, Anguaya Velasquez C, Sonker M, Arriaga EA, Ros A. Continuous organelle separation in an insulator-based dielectrophoretic device. Electrophoresis 2022; 43:1283-1296. [PMID: 34964147 PMCID: PMC10905415 DOI: 10.1002/elps.202100326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Heterogeneity in organelle size has been associated with devastating human maladies such as neurodegenerative diseases or cancer. Therefore, assessing the size-based subpopulation of organelles is imperative to understand the biomolecular foundations of these diseases. Here, we demonstrated a ratchet migration mechanism using insulator-based dielectrophoresis in conjunction with a continuous flow component that allows the size-based separation of submicrometer particles. The ratchet mechanism was realized in a microfluidic device exhibiting an array of insulating posts, tailoring electrokinetic and dielectrophoretic transport. A numerical model was developed to elucidate the particle migration and the size-based separation in various conditions. Experimentally, the size-based separation of a mixture of polystyrene beads (0.28 and 0.87 μ $\umu $ m) was accomplished demonstrating good agreement with the numerical model. Furthermore, the size-based separation of mitochondria was investigated using a mitochondria mixture isolated from HepG2 cells and HepG2 cells carrying the gene Mfn-1 knocked out, indicating distinct size-related migration behavior. With the presented continuous flow separation device, larger amounts of fractionated organelles can be collected in the future allowing access to the biomolecular signature of mitochondria subpopulations differing in size.
Collapse
Affiliation(s)
- Ricardo Ortiz
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Cesar Anguaya Velasquez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Singh R, Jain A, Palanichamy JK, Nag TC, Bakhshi S, Singh A. Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers. Appl Microsc 2021; 51:20. [PMID: 34964922 PMCID: PMC8716663 DOI: 10.1186/s42649-021-00069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022] Open
Abstract
We explored the link between mitochondrial biogenesis and mitochondrial morphology using transmission electron microscopy (TEM) in lymphoblasts of pediatric acute lymphoblastic leukemia (ALL) patients and compared these characteristics between tumors and control samples. Gene expression of mitochondrial biogenesis markers was analysed in 23 ALL patients and 18 controls and TEM for morphology analysis was done in 15 ALL patients and 9 healthy controls. The area occupied by mitochondria per cell and the cristae cross-sectional area was observed to be significantly higher in patients than in controls (p-value = 0.0468 and p-value< 0.0001, respectively). The mtDNA copy numbers, TFAM, POLG, and c-myc gene expression were significantly higher in ALL patients than controls (all p-values< 0.01). Gene Expression of PGC-1α was higher in tumor samples. The analysis of the correlation between PGC-1α expression and morphology parameters i.e., both M/C ratio and cristae cross-sectional area revealed a positive trend (r = 0.3, p = 0.1). The increased area occupied by mitochondria and increased cristae area support the occurrence of cristae remodelling in ALL. These changes might reflect alterations in cristae dynamics to support the metabolic state of the cells by forming a more condensed network. Ultrastructural imaging can be useful for affirming changes occurring at a subcellular organellar level.
Collapse
Affiliation(s)
- Ritika Singh
- Department of Biochemistry, Teaching Block, All India Institute of Medical Sciences, Room 3044, New Delhi, 110029, India
| | - Ayushi Jain
- Department of Biochemistry, Teaching Block, All India Institute of Medical Sciences, Room 3044, New Delhi, 110029, India
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, Convergence Block, All India Institute of Medical Sciences, New Delhi, India
| | - T C Nag
- Department of Anatomy, Teaching Block, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, Teaching Block, All India Institute of Medical Sciences, Room 3044, New Delhi, 110029, India.
| |
Collapse
|
3
|
Kim D, Luo J, Arriaga EA, Ros A. Deterministic Ratchet for Sub-micrometer (Bio)particle Separation. Anal Chem 2018; 90:4370-4379. [PMID: 29506379 DOI: 10.1021/acs.analchem.7b03774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resolving the heterogeneity of particle populations by size is important when the particle size is a signature of abnormal biological properties leading to disease. Accessing size heterogeneity in the sub-micrometer regime is particularly important to resolve populations of subcellular species or diagnostically relevant bioparticles. Here, we demonstrate a ratchet migration mechanism capable of separating sub-micrometer sized species by size and apply it to biological particles. The phenomenon is based on a deterministic ratchet effect, is realized in a microfluidic device, and exhibits fast migration allowing separation in tens of seconds. We characterize this phenomenon extensively with the aid of a numerical model allowing one to predict the speed and resolution of this method. We further demonstrate the deterministic ratchet migration with two sub-micrometer sized beads as model system experimentally as well as size-heterogeneous mouse liver mitochondria and liposomes as model system for other organelles. We demonstrate excellent agreement between experimentally observed migration and the numerical model.
Collapse
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jinghui Luo
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alexandra Ros
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| |
Collapse
|
4
|
Abstract
Early studies have shown mitochondrially-mediated oxidative phosphorylation is diminished in cancer cells, with glycolysis being the main source of energy production. More recent provocative reports have indicated that the mitochondria may be involved in a host of different aspects of tumorigenesis, including mutagenesis, maintenance of the malignant phenotype, and control of apoptosis. These studies have broadened the possible roles mitochondria may play in malignancy. Further studies to define the importance of mitochondria should revolve around the functional assessment of these changes in vitro and in vivo, and will be interesting for determining their significance in human cancer.
Collapse
Affiliation(s)
- L R Cavalli
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
5
|
|
6
|
Sokol RJ, Hudson G, Wales J, James NT. Ultrastructural morphometry of human leucocytes in health and disease. ELECTRON MICROSCOPY REVIEWS 1991; 4:179-95. [PMID: 1873487 DOI: 10.1016/0892-0354(91)90020-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this review, the literature on ultrastructural morphometry of each of the main types of human blood leucocytes has been considered, together with the technical and numerical procedures essential for valid analysis. Quantitative data have been reported for these cell types in health and comparisons have been made with those in disease states. In monocytes, and in macrophages developing from them, subtle ultrastructural differences have been detected and quantitated in malignant lymphoma; as the mononuclear phagocytes were not themselves neoplastic, the changes may have related to defects in host defence. Change in the ultrastructural characteristics of leukaemic monoblasts have also been reported. Lymphocytes and malignant lymphoid cells have been extensively investigated: differences between different types and subsets have been shown to be present in both normal lymphocytes and their malignant counterparts in leukemias and lymphomas. Particular attention has been paid to morphometric assessment of nuclear shape and size in these disorders and to its possible value as a diagnostic tool. Granulocytes have so far been the subject of few morphometric studies, although in hypereosinophilic syndrome, cellular changes have been defined and have thrown light on the abnormal pattern of degranulation. There have also been scattered reports on the cells of acute myelogenous leukaemia. The use of computers and sophisticated statistical packages has greatly facilitated the application of multiple comparison procedures and has permitted discriminant analysis to be carried out where appropriate. This review shows that ultrastructural morphometry of leucocytes will have an increasing application in clinical pathology.
Collapse
Affiliation(s)
- R J Sokol
- Department of Haematology, University of Sheffield, U.K
| | | | | | | |
Collapse
|
7
|
Spicer SS, Parmley RT, Boyd L, Schulte BA. Giant mitochondria distinct from enlarged mitochondria in secretory and ciliated cells of gerbil trachea and bronchioles. THE AMERICAN JOURNAL OF ANATOMY 1990; 188:269-81. [PMID: 2371967 DOI: 10.1002/aja.1001880306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous mitochondria ranging from slightly larger than normal to several micrometers in diameter (giant) were found in about one-half the serous secretory cells in the surface epithelium of the normal gerbil trachea and proximal bronchi. Tracheal serous cells of mice also were found to contain numerous giant mitochondria. Clara cells of gerbil bronchioles contained abundant giant mitochondria in addition to normal tubular mitochondria and the second population of enlarged spherical mitochondria that have been described in Clara cells of several genera. In contrast, mouse Clara cells revealed the normal tubular and the enlarged spherical mitochondria but no giant mitochondria. A survey of a number of cell types in gerbils failed to disclose hypertrophied mitochondria outside tracheobronchial surface epithelium and bronchioles. The mitochondrial enlargement resulted from an increase of matrix but not cristae. The expansion of matrix displaced the relatively sparse cristae into small collections compressed against the outer membrane. The prevalence of giant mitochondria and of granular endoplasmic reticulum is similar among cells, and these two organelles are codistributed within cells. The megamitochondria and granular reticulum occupy a central stratum, whereas normal mitochondria occur in the apical and basal regions. The giant mitochondria are considered related to a normal biologic activity that is characteristic of respiratory tract epithelium of mice and gerbils selectively and is more prominent in secretory cells than in ciliated cells.
Collapse
Affiliation(s)
- S S Spicer
- Department of Pathology, Medical University of South Carolina, Charleston 29425
| | | | | | | |
Collapse
|