1
|
Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ. The nucleolus: structure/function relationship in RNA metabolism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:415-31. [PMID: 21956940 DOI: 10.1002/wrna.39] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nucleolus is the ribosome factory of the cells. This is the nuclear domain where ribosomal RNAs are synthesized, processed, and assembled with ribosomal proteins. Here we describe the classical tripartite organization of the nucleolus in mammals, reflecting ribosomal gene transcription and pre-ribosomal RNA (pre-rRNA) processing efficiency: fibrillar center, dense fibrillar component, and granular component. We review the nucleolar organization across evolution from the bipartite organization in yeast to the tripartite organization in humans. We discuss the basic principles of nucleolar assembly and nucleolar structure/function relationship in RNA metabolism. The control of nucleolar assembly is presented as well as the role of pre-existing machineries and pre-rRNAs inherited from the previous cell cycle. In addition, nucleoli carry many essential extra ribosomal functions and are closely linked to cellular homeostasis and human health. The last part of this review presents recent advances in nucleolar dysfunctions in human pathology such as cancer and virus infections that modify the nucleolar organization.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and cell cycle, Institut Jacques Monod-UMR 7592 CNRS, Université Paris Diderot, 75205 Paris cedex 13, France.
| | | | | | | | | |
Collapse
|
2
|
Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts. Exp Cell Res 2001; 269:23-34. [PMID: 11525636 DOI: 10.1006/excr.2001.5304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear functions in erythrocytes are almost completely extinct. There is no RNA polymerase I transcription, although a remnant nucleolar structure is still present. The remnant nucleolus of Xenopus laevis erythrocytes maintains a morphologically organized structure, nearly exclusively fibrillar. In this inactive nucleolar remnant, we revealed the presence of a modified form of transcription factor UBF. Several proteins of the processing machinery such as fibrillarin, nucleolin and B23/NO38, snoRNAs U3 and U8, and partially processed preribosomal RNAs colocalized in these remnant structures. Attempts to reprogram these erythrocyte nuclei in Xenopus egg extract showed that import of several nucleolar proteins was induced while the nucleolar remnant was disorganized. UBF became abundant and showed a necklace-like distribution on the decondensed ribosomal genes. Fibrillarin, nucleolin, and snoRNAs U3 and U8, also largely imported from the extract, were associated in large prenuclear bodies scattered in the nucleoplasm. B23/NO38 was present in different small bodies formed only in the most decondensed nuclei. In these remodeled erythrocyte nuclei, there was no imported preribosomal RNA and the initial presence of a residual nucleolar structure containing several partners of ribosome biogenesis was not sufficient to promote reassembly of newly imported nucleolar machineries. These nuclei, which reproduce the early events of nucleogenesis are also transcriptionally silent and thus compare to the early embryonic nuclei of Xenopus laevis.
Collapse
Affiliation(s)
- C Verheggen
- Institut Jacques Monod, UMR 7592, Paris, France
| | | | | | | |
Collapse
|
3
|
Likovský Z, Peterka M, Peterková R. Development of nucleolar apparatus in the chick primitive erythroid cells. ANATOMY AND EMBRYOLOGY 1994; 189:539-44. [PMID: 7526745 DOI: 10.1007/bf00186827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The primitive erythroid line cells of chick embryos were studied during embryonic days 2-14 by means of a cytochemical method to investigate the appearance and frequency of the main nucleolar types. The populations of erythroblasts and erythrocytes were classified according to the presence of functionally dominant nucleoli in their nuclei. In the course of primitive erythroid cell differentiation and maturation, compact nucleoli and nucleoli with nucleolonemas (both supposed to be RNA biosynthetically active) were gradually replaced by ring-shaped nucleoli and finally by micronucleoli reflecting the reversible and irreversible inhibition of RNA synthesis, respectively. The occurrence of the main nucleolar types and their values in primitive erythroid cells of the developing chick depend not only on the maturation stage of the blood cells, but also on the developmental stage of the chick embryo. In comparison with the definitive erythroid line of the post-hatching chick and hen, the cells of the chick embryonic primitive erythroid line possess relatively high values of "active" nucleolar types. These are still present in advanced maturation stages, and occur also as definitive erythroid lines of lower vertebrates.
Collapse
Affiliation(s)
- Z Likovský
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague
| | | | | |
Collapse
|
4
|
Abstract
In order to gain further insights into the fundamental structure of the nucleolus, nucleolar remnants of Xenopus and chickens were examined for the presence of fibrillarin and nucleolus organizer region (NOR) silver staining. Nucleolar remnants of Xenopus nucleated red blood cells were found to contain easily detectable amounts of fibrillarin and NOR silver staining. Upon examination of various tissues, fibrillarin and NOR silver staining were detected in nucleoli of Xenopus liver hepatocytes and within nucleoli of oocytes and follicle cells from ovaries of mature female toads. By comparison, nucleolar remnants of adult chicken nucleated red blood cells contained only trace amounts of fibrillarin and NOR silver staining, whereas red blood cell nucleolar remnants of immature chicks had easily detectable amounts of fibrillarin and NOR silver staining. Nucleoli from hepatocytes of both adult and immature chickens demonstrated comparable levels of fibrillarin and NOR silver staining. Since fibrillarin was found in nucleolar remnant structures, we tested for (and detected) its presence in residual nucleoli of in situ nuclear matrix derived from HeLa cells. These findings are discussed in terms of the basic structural and functional organization of the nucleolus.
Collapse
Affiliation(s)
- R L Ochs
- W.M. Keck Autoimmune Disease Center, La Jolla, California 92037
| | | |
Collapse
|
5
|
Schmidt-Zachmann MS, Hügle-Dörr B, Franke WW. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J 1987; 6:1881-90. [PMID: 3308448 PMCID: PMC553572 DOI: 10.1002/j.1460-2075.1987.tb02447.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using monoclonal antibodies we have localized a polypeptide, appearing on gel electrophoresis with a Mr of approximately 38,000 and a pI of approximately 5.6, to the granular component of the nucleoli of Xenopus laevis oocytes and a broad range of cells from various species. The protein (NO38) also occurs in certain distinct nucleoplasmic particles but is not detected in ribosomes and other cytoplasmic components. During mitosis NO38-containing material dissociates from the nucleolar organizer region and distributes over the chromosomal surfaces and the perichromosomal cytoplasm; in telophase it re-populates the forming nucleoli. With these antibodies we have isolated from a X. laevis ovary lambda gt11 expression library a cDNA clone encoding a polypeptide which, on one- and two-dimensional gel electrophoresis, co-migrates with authentic NO38. The amino acid sequence deduced from this clone defines a polypeptide of 299 amino acids of mol. wt 33,531 which is characterized by the presence of two domains exceptionally rich in aspartic and glutamic acid, one of them flanked by two putative karyophilic signal heptapeptides. Comparison with other protein sequences shows that NO38 is closely related to the histone-binding, karyophilic protein nucleoplasmin: the first 124 amino acids have 58 amino acid positions in common. Protein NO38 also shows striking homologies to the phosphopeptide region of rat nucleolar protein B23 and the carboxyterminal region of human B23. We propose that protein NO38, which forms distinct homo-oligomers of approximately 7S and Mr of approximately 230,000, is a member of a family of karyophilic proteins, the 'nucleoplasmin family'. It is characterized by its specific association with the nucleolus and might be involved in nuclear accumulation, nucleolar storage and pre-rRNA assembly of ribosomal proteins in a manner similar to that discussed for the role of nucleoplasmin in histone storage and chromatin assembly.
Collapse
|
6
|
Harris JR. Blood cell nuclei: the structure and function of lymphoid and erythroid nuclei. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 102:53-168. [PMID: 3533831 DOI: 10.1016/s0074-7696(08)61274-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Hügle B, Hazan R, Scheer U, Franke WW. Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis. J Cell Biol 1985; 100:873-86. [PMID: 3882724 PMCID: PMC2113517 DOI: 10.1083/jcb.100.3.873] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Using antibodies to various nucleolar and ribosomal proteins, we define, by immunolocalization in situ, the distribution of nucleolar proteins in the different morphological nucleolar subcompartments. In the present study we describe the nucleolar localization of a specific ribosomal protein (S1) by immunofluorescence and immunoelectron microscopy using a monoclonal antibody (RS1-105). In immunoblotting experiments, this antibody reacts specifically with the largest and most acidic protein of the small ribosomal subunit (S1) and shows wide interspecies cross-reactivity from amphibia to man. Beside its localization in cytoplasmic ribosomes, this protein is found to be specifically localized in the granular component of the nucleolus and in distinct granular aggregates scattered over the nucleoplasm. This indicates that ribosomal protein S1, in contrast to reports on other ribosomal proteins, is not bound to nascent pre-rRNA transcripts but attaches to preribosomes at later stages of rRNA processing and maturation. This protein is not detected in the residual nucleolar structures of cells inactive in rRNA synthesis such as amphibian and avian erythrocytes. During mitosis, the nucleolar material containing ribosomal protein S1 undergoes a remarkable transition and shows a distribution distinct from that of several other nucleolar proteins. In prophase, the nucleolus disintegrates and protein S1 appears in numerous small granules scattered throughout the prophase nucleus. During metaphase and anaphase, a considerable amount of this protein is found in association with the surfaces of all chromosomes and finely dispersed in the cell plasm. In telophase, protein S1-containing material reaccumulates in granular particles in the nucleoplasm of the newly formed nuclei and, finally, in the re-forming nucleoli. These observations indicate that the nucleolus-derived particles containing ribosomal protein S1 are different from cytoplasmic ribosomes and, in the living cell, are selectively recollected after mitosis into the newly formed nuclei and translocated into a specific nucleolar subcompartment, i.e., the granular component. The nucleolar location of ribosomal protein S1 and its rearrangement during mitosis is discussed in relation to the distribution of other nucleolar proteins.
Collapse
|
8
|
Weiske-Benner A, Eckert WA. Differentiation of nuclear structure during the sexual cycle in Tetrahymena thermophila. Differentiation 1985. [DOI: 10.1111/j.1432-0436.1985.tb00829.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Schmidt-Zachmann MS, Hügle B, Scheer U, Franke WW. Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody. Exp Cell Res 1984; 153:327-46. [PMID: 6539710 DOI: 10.1016/0014-4827(84)90604-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A monoclonal murine antibody (No-114) is described which reacts specifically with a polypeptide of molecular weight (Mr) 180 000 present in low-speed nuclear pellets from oocytes and somatic cells of Xenopus laevis and X. borealis and in isolated amplified nucleoli. Two-dimensional gel electrophoresis has revealed the acidic nature of this polypeptide (isoelectric at pH of ca 4.2 in the presence of 9.5 M urea). A relatively large proportion of the protein is extracted at elevated ionic strength (i.e., at 0.4-0.5 M alkali salt) in a form sedimenting at approx. 7-8S, compatible with a monomeric state. It is also extracted by digestion with RNase but not with DNase. In immunofluorescence microscopy, antibody No-114 stains intensely nucleoli of oocytes and all somatic cells examined, including the residual nucleolar structure of Xenopus erythrocytes which are transcriptionally inactive. During mitosis the antigen does not remain associated with the nucleolar organizer regions (NOR) of chromosomes but is released and dispersed over the cytoplasm until telophase when it re-associates with the reforming interphase nucleoli. At higher resolution the immunofluorescent region is often resolved into a number of distinct subnucleolar components of varied size and shape. Immunoelectron microscopy using colloidal gold-coupled secondary antibodies reveals that the Mr 180 000 protein is confined to the dense fibrillar component of the nucleolus. This conclusion is also supported by its localization in the fibrillar part of segregated nucleoli of cells treated with actinomycin D. We conclude that nucleoli contain a prominent protein of Mr 180 000 which contributes to the general structure of the dense fibrillar component of the interphase nucleolus, independent of its specific transcriptional activity.
Collapse
|
10
|
Hernandez-Verdun D, Derenzini M, Bouteille M. Relationship between the Ag-NOR proteins and ribosomal chromatin in situ during drug-induced RNA synthesis inhibition. JOURNAL OF ULTRASTRUCTURE RESEARCH 1984; 88:55-65. [PMID: 6085836 DOI: 10.1016/s0022-5320(84)90181-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In human TG tumor cells, the role of silver-NOR proteins was investigated by examining their relationship with the chromatin structure during inhibition of RNA synthesis by actionomycin-D treatment. This induced segregation of the nucleoli into four distinct zones and weakened the silver reaction. The fibrillar components were found to constitute the site of silver-stained proteins segregation. Feulgen-like osmium-ammine staining revealed that the DNA disappeared from the segregated nucleoli except for a network of nonnucleosomal filaments. When Ag-NOR protein detection was combined with chromatin visualization, we found constant overlapping of the silver reaction sites with the nonnucleosomal DNA filaments. Our results indicate that certain Ag-NOR proteins are not directly linked to active rRNA synthesis, but might rather affect the structure of ribosomal genes.
Collapse
|
11
|
Benavente R, Krohne G, Stick R, Franke WW. Electron microscopic immunolocalization of a karyoskeletal protein of molecular weight 145 000 in nucleoli and perinucleolar bodies of Xenopus laevis. Exp Cell Res 1984; 151:224-35. [PMID: 6365576 DOI: 10.1016/0014-4827(84)90370-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amplified nucleoli of Xenopus laevis oocytes contain a major karyoskeletal protein of Mr 145 000 insoluble in low- and high-salt buffer as well as in non-denaturing detergents. Electron microscopic localization on native and high-salt extracted nucleoli using specific murine antibodies against this polypeptide and gold-coupled antibodies for visualization reveals that the Mr 145 000 protein is located in coils of filaments of ca 4 nm diameter. In addition, this protein occurs in the medusoid filament bodies (MFBs) present in the nucleolar cortex and free in the nucleoplasm. In somatic cells of tissues and in A6 kidney epithelial cells grown in vitro the Mr 145 000 polypeptide or an immunologically related protein is also organized in coiled aggregates of filaments 4-12 nm in diameter present both in the periphery of nucleoli and free in the nucleoplasm. We discuss a possible role of this protein as a karyoskeletal support involved in the storage and transport of preribosomal particles.
Collapse
|
12
|
|
13
|
Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts. Mol Cell Biol 1982. [PMID: 7346715 DOI: 10.1128/mcb.1.12.1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polypeptides synthesized by mature embryonic erythrocytes prepared from the peripheral blood of 14- to 15-day-old chicken embryos were analyzed by two-dimensional gel electrophoresis. Fewer than 200 species of polypeptides were detected; the major polypeptides made at this time were identified as the alpha A-, alpha D-, and beta-globin chains. The dormant erythrocyte nuclei were next reactivated to transcriptional competence by transplantation into enucleated mouse or chicken embryo fibroblasts, with frequencies of cytoplast renucleation of about 50 and 90%, respectively. Since large numbers of hybrid cells could be constructed, a biochemical analysis was possible. Electrophoretic analysis of the [35S]methionine-labeled polypeptides made in the hybrid cell types showed that polypeptides having the mobilities of only two (alpha A and alpha D) of the three major adult globin chains were made as major constituents of the hybrid cells. However, analysis of 14C-amino acid-labeled polypeptides revealed that a beta-like polypeptide that lacked methionine was also synthesized in large amounts. This polypeptide was tentatively identified as the early embryonic globin species rho. Globin synthesis was detected as early as 3 h after nuclear transplantation and as late as 18 h, the last time measured in these experiments. It appeared that globin polypeptides made at very early times were translated at least partially from chicken messenger ribonucleic acid introduced into the hybrid cells during fusion, whereas those made at later times were translated primarily from newly synthesized globin messenger ribonucleic acid. The potential usefulness of this hybrid cell system in analyzing mechanisms regulating globin gene expression is discussed.
Collapse
|
14
|
Landes GM, Martinson HG. Transcriptional properties of chick embryonic erythroid nuclei in vitro. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33924-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Bruno J, Reich N, Lucas JJ. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts. Mol Cell Biol 1981; 1:1163-76. [PMID: 7346715 PMCID: PMC369742 DOI: 10.1128/mcb.1.12.1163-1176.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The polypeptides synthesized by mature embryonic erythrocytes prepared from the peripheral blood of 14- to 15-day-old chicken embryos were analyzed by two-dimensional gel electrophoresis. Fewer than 200 species of polypeptides were detected; the major polypeptides made at this time were identified as the alpha A-, alpha D-, and beta-globin chains. The dormant erythrocyte nuclei were next reactivated to transcriptional competence by transplantation into enucleated mouse or chicken embryo fibroblasts, with frequencies of cytoplast renucleation of about 50 and 90%, respectively. Since large numbers of hybrid cells could be constructed, a biochemical analysis was possible. Electrophoretic analysis of the [35S]methionine-labeled polypeptides made in the hybrid cell types showed that polypeptides having the mobilities of only two (alpha A and alpha D) of the three major adult globin chains were made as major constituents of the hybrid cells. However, analysis of 14C-amino acid-labeled polypeptides revealed that a beta-like polypeptide that lacked methionine was also synthesized in large amounts. This polypeptide was tentatively identified as the early embryonic globin species rho. Globin synthesis was detected as early as 3 h after nuclear transplantation and as late as 18 h, the last time measured in these experiments. It appeared that globin polypeptides made at very early times were translated at least partially from chicken messenger ribonucleic acid introduced into the hybrid cells during fusion, whereas those made at later times were translated primarily from newly synthesized globin messenger ribonucleic acid. The potential usefulness of this hybrid cell system in analyzing mechanisms regulating globin gene expression is discussed.
Collapse
|