1
|
Vignaud T, Copos C, Leterrier C, Toro-Nahuelpan M, Tseng Q, Mahamid J, Blanchoin L, Mogilner A, Théry M, Kurzawa L. Stress fibres are embedded in a contractile cortical network. NATURE MATERIALS 2021; 20:410-420. [PMID: 33077951 PMCID: PMC7610471 DOI: 10.1038/s41563-020-00825-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.
Collapse
Affiliation(s)
- Timothée Vignaud
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
- Clinique de Chirurgie Digestive et Endocrinienne, Hôtel Dieu, Nantes, France
| | - Calina Copos
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Christophe Leterrier
- NeuroCyto, Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille Université, Marseille, France
| | - Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Qingzong Tseng
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Manuel Théry
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| | - Laetitia Kurzawa
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| |
Collapse
|
2
|
Kassianidou E, Kumar S. A biomechanical perspective on stress fiber structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3065-74. [PMID: 25896524 DOI: 10.1016/j.bbamcr.2015.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Abstract
Stress fibers are actomyosin-based bundles whose structural and contractile properties underlie numerous cellular processes including adhesion, motility and mechanosensing. Recent advances in high-resolution live-cell imaging and single-cell force measurement have dramatically sharpened our understanding of the assembly, connectivity, and evolution of various specialized stress fiber subpopulations. This in turn has motivated interest in understanding how individual stress fibers generate tension and support cellular structure and force generation. In this review, we discuss approaches for measuring the mechanical properties of single stress fibers. We begin by discussing studies conducted in cell-free settings, including strategies based on isolation of intact stress fibers and reconstitution of stress fiber-like structures from purified components. We then discuss measurements obtained in living cells based both on inference of stress fiber properties from whole-cell mechanical measurements (e.g., atomic force microscopy) and on direct interrogation of single stress fibers (e.g., subcellular laser nanosurgery). We conclude by reviewing various mathematical models of stress fiber function that have been developed based on these experimental measurements. An important future challenge in this area will be the integration of these sophisticated biophysical measurements with the field's increasingly detailed molecular understanding of stress fiber assembly, dynamics, and signal transduction. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
3
|
Abstract
A cell undergoes many genetic and epigenetic changes as it transitions to malignancy. Malignant transformation is also accompanied by a progressive loss of tissue homeostasis and perturbations in tissue architecture that ultimately culminates in tumor cell invasion into the parenchyma and metastasis to distant organ sites. Increasingly, cancer biologists have begun to recognize that a critical component of this transformation journey involves marked alterations in the mechanical phenotype of the cell and its surrounding microenvironment. These mechanical differences include modifications in cell and tissue structure, adaptive force-induced changes in the environment, altered processing of micromechanical cues encoded in the extracellular matrix (ECM), and cell-directed remodeling of the extracellular stroma. Here, we review critical steps in this "force journey," including mechanical contributions to tissue dysplasia, invasion of the ECM, and metastasis. We discuss the biophysical basis of this force journey and present recent advances in the measurement of cellular mechanical properties in vitro and in vivo. We end by describing examples of molecular mechanisms through which tumor cells sense, process and respond to mechanical forces in their environment. While our understanding of the mechanical components of tumor growth, survival and motility remains in its infancy, considerable work has already yielded valuable insight into the molecular basis of force-dependent tumor pathophysiology, which offers new directions in cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, USA.
| | | |
Collapse
|
4
|
Colombelli J, Reynaud EG, Stelzer EHK. Investigating Relaxation Processes in Cells and Developing Organisms: From Cell Ablation to Cytoskeleton Nanosurgery. Methods Cell Biol 2007; 82:267-91. [PMID: 17586260 DOI: 10.1016/s0091-679x(06)82008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic microscopy of living cells and organisms alone does not reveal the high level of complexity of cellular and subcellular organization. All observable processes rely on the activity of biochemical and biophysical processes and many occur at a physiological equilibrium. Experimentally, it is not trivial to apply a perturbation that targets a specific process without perturbing the overall equilibrium of a cell. Drugs and more recently RNAi certainly have general and undesired effects on cell physiology and metabolism. In particular, they affect the entire cell. Pulsed lasers allow to severe biological tissues with a precision in the range of hundreds of nanometers and to achieve ablation on the level of a single cell or a subcellular compartment. In this chapter, we present an efficient implementation of a picosecond UV-A pulsed laser-based nanosurgery system and review the different mechanisms of ablation that can be achieved at different levels of cellular organization. We discuss the performance of the ablation process in terms of the energy deposited onto the sample and compare our implementation to others recently employed for cellular and subcellular surgery. Above the energy threshold of ionization, we demonstrate how to achieve single-cell ablation through the induction of mechanical perturbation and cavitation in living organisms. Below this threshold, we induce cytoskeleton severing inside live cells. By combining nanosurgery with fast live-imaging fluorescence microscopy, we show how the apparent equilibrium of the cytoskeleton can be perturbed regionally inside a cell.
Collapse
Affiliation(s)
- Julien Colombelli
- Light Microscopy Group, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
5
|
Lele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol 2006; 207:187-94. [PMID: 16288479 DOI: 10.1002/jcp.20550] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The formation of focal adhesions that mediate alterations of cell shape and movement is controlled by a mechanochemical mechanism in which cytoskeletal tensional forces drive changes in molecular assembly; however, little is known about the molecular biophysical basis of this response. Here, we describe a method to measure the unbinding rate constant k(OFF) of individual GFP-labeled focal adhesion molecules in living cells by modifying the fluorescence recovery after photobleaching (FRAP) technique and combining it with mathematical modeling. Using this method, we show that decreasing cellular traction forces on focal adhesions by three different techniques--chemical inhibition of cytoskeletal tension generation, laser incision of an associated actin stress fiber, or use of compliant extracellular matrices--increases the k(OFF) of the focal adhesion protein zyxin. In contrast, the k(OFF) of another adhesion protein, vinculin, remains unchanged after tension dissipation. Mathematical models also demonstrate that these force-dependent increases in zyxin's k(OFF) that occur over seconds are sufficient to quantitatively predict large-scale focal adhesion disassembly that occurs physiologically over many minutes. These findings demonstrate that the molecular binding kinetics of some, but not all, focal adhesion proteins are sensitive to mechanical force, and suggest that force-dependent changes in this biophysical parameter may govern the supramolecular events that underlie focal adhesion remodeling in living cells.
Collapse
Affiliation(s)
- Tanmay P Lele
- Department of Surgery, Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
6
|
Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 2006; 90:3762-73. [PMID: 16500961 PMCID: PMC1440757 DOI: 10.1529/biophysj.105.071506] [Citation(s) in RCA: 439] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.
Collapse
Affiliation(s)
- Sanjay Kumar
- Vascular Biology Program, Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115-5737, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Berns MW, Wright WH, Wiegand Steubing R. Laser microbeam as a tool in cell biology. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 129:1-44. [PMID: 1917379 DOI: 10.1016/s0074-7696(08)60507-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M W Berns
- Department of Surgery, Beckman Laser Institute & Medical Clinic, University of California, Irvine 92715
| | | | | |
Collapse
|
8
|
|
9
|
Abstract
We have employed fluorescent analogue cytochemistry and fluorescence photobleaching to study the mobility of actin and alpha-actin along stress fibers. Rhodamine-labeled actin or alpha-actinin microinjected into embryonic chick cardiac fibroblasts soon became incorporated into stress fibers. A pulse of a laser microbeam was used to photobleach small spots on the fluorescent stress fibers. Images of the bleached fiber were recorded with an intensified image processing system at 2-3 min intervals. The distance between the bleached spot and the terminus of the stress fiber, which remained stationary throughout the experiment, was then measured in the successive images. Movement of bleached spots was detected along stress fibers located in the apparently trailing processes of polygonal fibroblasts, and only occurred in one direction: away from the distal tip of the stress fiber. The rate of movement calculated for alpha-actinin-injected cells was 0.24 +/- 0.12 micron/min, for actin-injected cells, 0.29 +/- 0.11 micron/min. The rate did not seem to be affected by the location of the spot relative to the distal end of the stress fiber unless the spot was located within the most distal 5 microns of the stress fiber. Anti-myosin antibody staining indicated that stress fibers which demonstrated translocation were relatively depleted of myosin. The apparent translocation of proteins along stress fibers, possibly generated by stretching, may be related to the retraction of cell processes during locomotion.
Collapse
|
10
|
McKenna NM, Meigs JB, Wang YL. Exchangeability of alpha-actinin in living cardiac fibroblasts and muscle cells. J Cell Biol 1985; 101:2223-32. [PMID: 4066755 PMCID: PMC2114028 DOI: 10.1083/jcb.101.6.2223] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have investigated the exchangeability of alpha-actinin in various structures of cultured chick cardiac fibroblasts and muscle cells using fluorescent analogue cytochemistry in combination with fluorescence recovery after photobleaching. Living cells were microinjected with tetramethylrhodamine-labeled alpha-actinin, which became localized in cellular structures. Small areas of labeled structures were then photobleached with a laser pulse, and the subsequent recovery of fluorescence was monitored with an image intensifier coupled to an image-processing system. In fibroblasts, fluorescence recovery was studied in stress fibers and in adhesion plaques. Bleached spots in adhesion plaques generally attained complete recovery within 20 min; whereas complete recovery in stress fibers occurred within 30 to 60 min. In muscle cells, alpha-actinin became localized in the Z-lines of sarcomeres, in punctate structures, and in apparently continuous bundle-like structures. Fluorescence recovery in Z-lines, punctate structures, and some bundle-like structures was extremely slow. Complete recovery did not occur within the 6- to 7-h observation period. However, some bundle-like structures recovered completely within 60 min, a rate similar to that of stress fibers in fibroblasts. These results indicate that fluorescently labeled alpha-actinin is more stably associated with structures in muscle cells than in fibroblasts. In addition, different structures within the same cell can display different alpha-actinin exchangeabilities which, in muscle cells, could be developmentally related.
Collapse
|