1
|
Chen Z, Chen Z, Zhu J, He J, Liu Q, Zhu H, Lei A, Wang J. Proteomic Responses of Dark-Adapted Euglena gracilis and Bleached Mutant Against Light Stimuli. Front Bioeng Biotechnol 2022; 10:843414. [PMID: 35309998 PMCID: PMC8927018 DOI: 10.3389/fbioe.2022.843414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Euglena gracilis (E. gracilis) has secondary endosymbiotic chloroplasts derived from ancient green algae. Its chloroplasts are easily lost under numerous conditions to become permanently bleached mutants. Green cells adapted in the dark contain undeveloped proplastids and they will develop into mature chloroplasts after 3 days of light exposure. Thus, E. gracilis is an ideal model species for a chloroplast development study. Previous studies about chloroplast development in E. gracilis focused on morphology and physiology, whereas few studies have addressed the regulatory processes induced by light in the proteome. In this study, the whole-genome proteome of dark-adapted E. gracilis (WT) and permanently ofloxacin-bleached mutant (B2) was compared under the light exposure after 0, 12, and 72 h. The results showed that the photosynthesis-related proteins were up-regulated over time in both WT and B2. The B2 strain, with losing functional chloroplasts, seemed to possess a complete photosynthetic function system. Both WT and B2 exhibited significant light responses with similar alternation patterns, suggesting the sensitive responses to light in proteomic levels. The main metabolic activities for the utilization of carbon and energy in WT were up-regulated, while the proteins with calcium ion binding, cell cycle, and non-photosynthetic carbon fixation were down-regulated in B2. This study confirmed light-induced chloroplast development in WT from dark, and also for the first time investigates the light responses of a bleached mutant B2, providing more information about the unknown functions of residual plastids in Euglena bleached mutants.
Collapse
Affiliation(s)
- Zhenfan Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
2
|
Photo and Nutritional Regulation of Euglena Organelle Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28429322 DOI: 10.1007/978-3-319-54910-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Euglena can use light and CO2, photosynthesis, as well as a large variety of organic molecules as the sole source of carbon and energy for growth. Light induces the enzymes, in this case an entire organelle, the chloroplast, that is required to use CO2 as the sole source of carbon and energy for growth. Ethanol, but not malate, inhibits the photoinduction of chloroplast enzymes and induces the synthesis of the glyoxylate cycle enzymes that comprise the unique metabolic pathway leading to two carbon, ethanol and acetate, assimilation. In resting, carbon starved cells, light mobilizes the degradation of the storage carbohydrate paramylum and transiently induces the mitochondrial proteins required for the aerobic metabolism of paramylum to provide the carbon and energy required for chloroplast development. Other mitochondrial proteins are degraded upon light exposure providing the amino acids required for the synthesis of light induced proteins. Changes in protein levels are due to increased and decreased rates of synthesis rather than changes in degradation rates. Changes in protein synthesis rates occur in the absence of a concomitant increase in the levels of mRNAs encoding these proteins indicative of photo and metabolic control at the translational rather than the transcriptional level. The fraction of mRNA encoding a light induced protein such as the light harvesting chlorophyll a/b binding protein of photosystem II, (LHCPII) associated with polysomes in the dark is similar to the fraction associated with polysomes in the light indicative of photoregulation at the level of translational elongation. Ethanol, a carbon source whose assimilation requires carbon source specific enzymes, the glyoxylate cycle enzymes, represses the synthesis of chloroplast enzymes uniquely required to use light and CO2 as the sole source of carbon and energy for growth. The catabolite sensitivity of chloroplast development provides a mechanism to prioritize carbon source utilization. Euglena uses all of its resources to develop the metabolic capacity to utilize carbon sources such as ethanol which are rarely in the environment and delays until the rare carbon source is no longer available forming the chloroplast which is required to utilize the ubiquitous carbon source, light and CO2.
Collapse
|
3
|
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 2016; 63:331-341. [PMID: 27553633 DOI: 10.1007/s00294-016-0641-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022]
Abstract
Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.
Collapse
Affiliation(s)
- Lucia Hadariová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Erik Birčák
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | | | - Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic. .,Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia.
| |
Collapse
|
4
|
Krajčovič J, Schwartzbach SD. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol 2014; 202:135-45. [PMID: 25527385 DOI: 10.1016/j.jbiotec.2014.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
Abstract
Euglenoid flagellates are mainly fresh water protists growing in highly diverse environments making them well-suited for a multiplicity of biotechnology applications. Phototrophic euglenids possesses complex chloroplasts of green algal origin bounded by three membranes. Euglena nuclear and plastid genome organization, gene structure and gene expression are distinctly different from other organisms. Our observations on the model organism Euglena gracilis indicate that transcription of both the plastid and nuclear genome is insensitive to environmental changes and that gene expression is regulated mainly at the post-transcriptional level. Euglena plastids have been proposed as a site for the production of proteins and value added metabolites of biotechnological interest. Euglena has been shown to be a suitable protist species to be used for production of several compounds that are used in the production of cosmeceuticals and nutraceuticals, such as α-tocopherol, wax esters, polyunsaturated fatty acids, biotin and tyrosine. The storage polysaccharide, paramylon, has immunostimulatory properties and has shown a promise for biomaterials production. Euglena biomass can be used as a nutritional supplement in aquaculture and in animal feed. Diverse applications of Euglena in environmental biotechnology include ecotoxicological risk assessment, heavy metal bioremediation, bioremediation of industrial wastewater and contaminated water.
Collapse
Affiliation(s)
- Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152-3560, USA
| |
Collapse
|
5
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
6
|
Kořený L, Sobotka R, Janouškovec J, Keeling PJ, Oborník M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. THE PLANT CELL 2011; 23:3454-3462. [PMID: 21963666 PMCID: PMC3203424 DOI: 10.1105/tpc.111.089102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/07/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.
Collapse
Affiliation(s)
- Luděk Kořený
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 37981 Třeboň, Czech Republic
| | - Jan Janouškovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 37981 Třeboň, Czech Republic
| |
Collapse
|
7
|
Kořený L, Oborník M. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol 2011; 3:359-64. [PMID: 21444293 PMCID: PMC5654406 DOI: 10.1093/gbe/evr029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2011] [Indexed: 11/16/2022] Open
Abstract
Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Molecular Biology of Protists, Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Department of Molecular Biology of Protists, Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Fernández-Robledo JA, Schott EJ, Vasta GR. Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments. Biochem Biophys Res Commun 2008; 375:215-9. [DOI: 10.1016/j.bbrc.2008.07.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
|
9
|
Sulli C, Schwartzbach SD. The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 1995; 270:13084-90. [PMID: 7768903 DOI: 10.1074/jbc.270.22.13084] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The major Euglena thylakoid protein, the light harvesting chlorophyll a/b-binding protein of photosystem II (pLHCPII) is synthesized in the cytoplasm as a polyprotein precursor composed of a 141 amino acid presequence containing a signal peptide domain followed by eight mature LHCPIIs covalently linked by a decapeptide. To determine the transport route from cytoplasm to chloroplast and the site of polyprotein processing, Euglena was pulse labeled with [35S]sulfate, organelles separated on sucrose gradients, and pLHCPII and LHCPII immunoprecipitated and separated on SDS gels. After a 10-min pulse, the pLHCPII polyprotein was found in the endoplasmic reticulum (ER) and Golgi apparatus. LHCPII was undetectable after a 10-min pulse consistent with the 20-min half-life for pLHCPII processing. When pulse-labeled cells were chased for 20 or 40 min with unlabeled sulfate, the fraction of pLHCPII in the ER decreased, and the fraction in the Golgi apparatus increased. LHCPII appeared only in thylakoids and chloroplasts, never in the ER or Golgi apparatus. Na2CO3 extraction, a treatment that releases soluble but not integral membrane proteins, did not remove pLHCPII from ER and Golgi membranes. Trypsin digestion of ER and Golgi membranes produced 4 pLHCPII membrane protected fragments. The Euglena pLHCPII polyprotein is transported as an integral membrane protein from the ER to the Golgi apparatus and from the Golgi apparatus to the chloroplast. Polyprotein processing appears to occur during or soon after chloroplast import of the membrane-bound precursor.
Collapse
Affiliation(s)
- C Sulli
- School of Biological Sciences, University of Nebraska, Lincoln 68588, USA
| | | |
Collapse
|
10
|
Reinbothe C, Ortel B, Parthier B, Reinbothe S. Cytosolic and plastid forms of 5-enolpyruvylshikimate-3-phosphate synthase in Euglena gracilis are differentially expressed during light-induced chloroplast development. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:616-22. [PMID: 7808412 DOI: 10.1007/bf00282224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19), the target of the herbicide glyphosate [N-(phosphonomethyl)glycine], exists in two molecular forms in Euglena gracilis. One form has previously been characterized as a monofunctional 59 kDa protein. The other form constitutes a single domain of the multifunctional 165 kDa arom protein. The two enzyme forms are inversely regulated at the protein and mRNA levels during light-induced chloroplast development, as demonstrated by the determination of their enzyme activities after non-denaturing polyacrylamide gel electrophoresis and Northern hybridization analysis with a Saccharomyces cerevisiae ARO1 gene probe. The arom protein and its mRNA predominate in dark-grown cells, and the levels of both decline upon illumination. In contrast, the monofunctional EPSP synthase and its mRNA are induced by light, the increase in mRNA abundance preceding accumulation of the protein. The two enzymes are localized in different subcellular compartments, as demonstrated by comparing total protein patterns with those of isolated organelles. Glyphosate-adapted wild-type cells and glyphosate-tolerant cells of a plastid-free mutant of E. gracilis, W10BSmL, were used for organelle isolation and protein extraction, as these cell lines overproduce EPSP synthase and the arom protein, respectively. Evidence was obtained for the cytosolic localization of the arom protein and the plastid compartmentalization of the monofunctional EPSP synthase. These conclusions are further supported by the observation that EPSP synthase precursor, produced by in vitro translation of the hybrid-selected mRNA, was efficiently taken up and processed to mature size by isolated chloroplasts from photoautotrophic wild-type E. gracilis cells, while the in vitro-synthesized arom protein was not sequestered by isolated Euglena plastids.
Collapse
Affiliation(s)
- C Reinbothe
- Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | | | | |
Collapse
|
11
|
Saidha T, Schiff JA. Purification and properties of a phenol sulphotransferase from Euglena using L-tyrosine as substrate. Biochem J 1994; 298 ( Pt 1):45-50. [PMID: 8129730 PMCID: PMC1137981 DOI: 10.1042/bj2980045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A purification procedure based on (NH4)2SO4 precipitation, and chromatography on Affi-Gel Blue, DEAE-cellulose, hydroxyapatite and Bio-Gel P-60 yields a stable 6400-fold-purified active monomeric phenol (tyrosine) sulphotransferase of 26 kDa from W10BSmL, an aplastidic mutant of Euglena gracilis var. bacillaris. The apparent Km for adenosine 3'-phosphate 5'-phosphosulphate (PAPS) is 15 microM (60 microM tyrosine as substrate); adenosine 5'-phosphosulphate is inactive. L-Tyrosine gave the lowest apparent Km (33 microM) (with PAPS at 30 microM), but tyrosine esters, tyrosinamide, L-p-hydroxyphenylglycine and a number of tyrosine dipeptides were also active, with higher Km values. Nitrophenols (m- and p-) and chlorophenols (o-, m- and p-) were active, with higher Km values than for tyrosine. D-Tyrosine was inactive as a substrate, as was D-p-hydroxyphenylglycine and a number of other tyrosine derivatives lacking the carboxy carbonyl or the amino group, or having extra ring substituents or the hydroxy group in the wrong position. Adenosine 3',5'-bisphosphate and tyrosine O4-sulphate, products of the enzyme reaction with PAPS and tyrosine as substrates, showed competitive (Ki = 20 microM) and uncompetitive (Ki = 500 microM) inhibition kinetics respectively. This appears to be the first phenol sulphotransferase to accept tyrosine as substrate. This membrane-bound enzyme may be involved in tyrosine transport as well as detoxification.
Collapse
Affiliation(s)
- T Saidha
- Biology Department, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
12
|
Reinbothe S, Ortel B, Parthier B. Overproduction by gene amplification of the multifunctional arom protein confers glyphosate tolerance to a plastid-free mutant of Euglena gracilis. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:416-24. [PMID: 8391114 DOI: 10.1007/bf00276940] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cells of the plastid-free mutant line of Euglena gracilis var. bacillaris, W10BSmL, can be adapted to glyphosate [N-(phosphonomethyl)glycine] by gradually increasing the concentration of the herbicide in the culture medium. The molecular basis of glyphosate tolerance is the selective ca. ten-fold overproduction of the multifunctional arom protein catalyzing steps 2-6 in the pre-chorismate pathway. Determination of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (E.C.2.5.1.19), shikimate:NADP+ oxidoreductase (E.C.1.1.1.25) and shikimate kinase (E.C.2.7.1.71) activities after non-denaturing gel electrophoresis, in combination with two-dimensional separations, revealed an increase in all three enzyme activities associated with overproduction of a 165 kDa protein in cells adapted to 6 mM glyphosate. Further evidence for an involvement of the multifunctional arom protein in aromatic amino acid synthesis in the plastid-free W10BSmL cells was obtained by Northern hybridization with ARO1-, aroA-, aroL- and aroE-specific Saccharomyces cerevisiae gene probes encoding the entire arom protein or parts of the EPSP synthase, shikimate:NADP+ oxidoreductase and shikimate kinase domains, respectively. Overproduction in adapted relative to control cells of a 5.3 kb transcript that cross-hybridized with all of the different probes could be demonstrated. The elevated content of the arom transcript correlated with a selective amplification of two out of five genomic sequences that hybridized with the S. cerevisiae ARO1 gene probe in Southern blots. One of the amplified genomic fragments is assumed to encode the previously identified monofunctional 59 kDa EPSP synthase, which is thought to be an organellar protein, that accumulates to a certain extent in its enzymatically active precursor form of 64.5 kDa in the plastid-free W10BSmL cells.
Collapse
Affiliation(s)
- S Reinbothe
- Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | | |
Collapse
|
13
|
Schiff JA, Schwartzbach SD, Osafune T, Hase E. Photocontrol and processing of LHCP II apoprotein in Euglena: possible role of Golgi and other cytoplasmic sites. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1991; 11:219-36. [PMID: 1770406 DOI: 10.1016/1011-1344(91)80262-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Like other green photosynthetic eukaryotes, cells of Euglena gracilis var. bacillaris and strain Z contain a light-harvesting chlorophyll a/b complex associated with photosystem II. In Euglena, the formation of the 26.5 kDa principal light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) has a number of unusual features. The precursors to LHCP II are large polyproteins containing multiple copies of LHCP II, and photocontrol of their formation is largely translational. Under conditions favoring LHCP II accumulation in the thylakoids, a reaction with anti-LHCP II antibody can be observed in the Golgi by immunogold electron microscopy. The timing of the immunoreaction in the Golgi in synchronous cells and in cells undergoing normal light-induced chloroplast development suggests that the nascent LHCP II passes through the Golgi on the way to the thylakoids. The compartmentalized osmiophilic structure (COS) also shows an immunoreaction. These observations, and other discussed in this paper, suggest that light permits translation of polyprotein LHCP II precursors on cytoplasmic ribosomes of the rough endoplasmic reticulum (ER) and that these pass through the ER to the Golgi where, presumably, further modifications take place. Since an LHCP II immunoreaction is found in Golgi vesicles, these may transport the nascent LHCP II to the plastid and facilitate its uptake.
Collapse
Affiliation(s)
- J A Schiff
- Biology Department, Brandeis University, Waltham, MA 02254
| | | | | | | |
Collapse
|
14
|
Reinbothe S, Nelles A, Parthier B. N-(phosphonomethyl)glycine (glyphosate) tolerance in Euglena gracilis acquired by either overproduced or resistant 5-enolpyruvylshikimate-3-phosphate synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:365-73. [PMID: 1710184 DOI: 10.1111/j.1432-1033.1991.tb16024.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoautotrophic cells of Euglena gracilis can be adapted to N-(phosphonomethyl)glycine (glyphosate) by cultivation in media with progressively higher concentrations of the herbicide. Two different mechanisms of tolerance to the herbicide were observed. One is characterized by the overproduction and 40-fold accumulation of the target enzyme. 5-enolpyruvylshikimate-3-phosphate synthase, in cells adapted to 6 mM N-(phosphonomethyl)glycine. The other is connected with a herbicide-insensitive enzyme. No evidence was obtained for the involvement of the putative multifunctional arom protein previously reported to be involved in the biosynthesis of aromatic amino acids in Euglena. Cells adapted to N-(phosphonomethyl)glycine excreted shikimate and shikimate 3-phosphate into the medium: the amounts depended on the actual concentration of the herbicide. Two-dimensional gel electrophoresis and determination of 5-enolpyruvylshikimate-3-phosphate synthase activity in crude extracts, as well as after separation by non-denaturing gel electrophoresis, revealed that the overproduction of the enzyme in adapted cells correlates with the accumulation of a 59-kDa protein. Overproduction of this 59-kDa protein resulted from a selectively increased level of a mRNA coding for a 64.5-kDa polypeptide which appeared in adapted cells, as shown by cell-free translation in the wheat germ system. In contrast to this quantitative, adaptive type of tolerance, the second mechanism causing tolerance to N-(phosphonomethyl)glycine in the Euglena cell line NR 6/50 was probably related to a qualitatively altered 5-enolpyruvylshikimate-3-phosphate synthase, which could not be inhibited by even 2 mM N-(phosphonomethyl)glycine in vitro. In agreement with this observation, the putatively mutated cell line excreted neither shikimate nor shikimate 3-phosphate into the growth medium containing N-(phosphonomethyl)glycine, even if cultivated in the presence of 20 mM or 50 mM N-(phosphonomethyl)glycine.
Collapse
Affiliation(s)
- S Reinbothe
- Institute of Plant Biochemistry, Halle, Federal Republic of Germany
| | | | | |
Collapse
|
15
|
Li JJ, Saidha T, Schiff JA. Purification and properties of two forms of ATP sulfurylase from Euglena. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1078:68-76. [PMID: 1904773 DOI: 10.1016/0167-4838(91)90094-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two forms of ATP sulfurylase have been purified to homogeneity from mitochondria (ATPSm) and cells (ATPSc) of Euglena gracilis Klebs var. bacillaris Cori (aplastidic mutant W10BSmL). Both forms are monomeric, ATPSc is 52.3 kDa and ATPSm is 55 kDa. The pI is 7.9 for ATPSc and 5.8 for ATPSm. Therefore, ATPSm binds to DEAE-cellulose at pH 7.4; ATPSc does not. After cleavage by CNBr, the two forms of ATP sulfurylase show different sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns, suggesting that they differ in amino acid sequence. ATPSm is mainly associated with the mitochondrial membrane and ATPSc is mainly soluble in the cells. Both enzymes require similar conditions in the molybdolysis assay, but show different pH optima when sulfate is used as substrate. ATPSc is more sensitive to adenosine 5'-phosphosulfate (APS) inhibition than ATPSm in the SO2-4 incorporation reaction. In the reverse reaction, ATPSc requires much higher concentrations of PPi and MgCl2 to saturate the reaction than ATPSm. The data indicate that the two enzymes are quite distinct and may have different roles in cell metabolism.
Collapse
Affiliation(s)
- J J Li
- Biology Department, Brandeis University, Waltham, MA 02254
| | | | | |
Collapse
|
16
|
Osafune T, Schiff JA, Hase E. Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res 1991; 193:320-30. [PMID: 2004648 DOI: 10.1016/0014-4827(91)90103-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have localized LHCP II apoprotein in the Golgi and thylakoids of Euglena gracilis Klebs var. bacillaris Cori and strain Z Pringsheim by electron microscopy using a specific antibody and protein A-gold. Using synchronized cells (light, 14 h:dark, 10 h) we show that thylakoids are always immunoreactive. There is no reaction in the Golgi at 0 h (the beginning of the light period) but immunoreaction appears in the Golgi soon thereafter, rises to a peak at 8 h and declines to zero by 16 h (2 h into the dark period). The peak in immunoreaction in the Golgi immediately precedes the peak in cellular 14C-labeling of thylakoid LHCP II apoprotein seen by Brandt and von Kessel (Plant Physiol. (1983) 72, 616), supporting our suggestion that processing in the Golgi precedes deposition of LHCP apoprotein in the thylakoids. Substitution of preimmune serum for antiserum eliminates the immunoreaction in the Golgi, and thylakoids of synchronized cells of mutant Gr1BSL which lacks LHCP II apoprotein show no immunoreaction in the Golgi or thylakoids at any stage. Random observations indicate that the compartmentalized osmiophilic structure (COS) shows an immunoreaction with anti-LHCP II apoprotein antibody at 1 h into the light period (when the Golgi is not immunoreactive) and at 10 h into the light period (when the Golgi is fully reactive), suggesting that the COS remains immunoreactive throughout the cell cycle.
Collapse
Affiliation(s)
- T Osafune
- Department of Microbiology, Tokyo Medical College, Japan
| | | | | |
Collapse
|
17
|
Li JY, Schiff JA. Purification and properties of adenosine 5'-phosphosulphate sulphotransferase from Euglena. Biochem J 1991; 274 ( Pt 2):355-60. [PMID: 2006905 PMCID: PMC1150144 DOI: 10.1042/bj2740355] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adenosine 5'-phosphosulphate sulphotransferase (APSST) was extracted from Euglena gracilis Klebs var. bacillaris mutant W10BSmL by freezing and thawing and was purified about 10,000-fold (to homogeneity) with 10.5% recovery by (NH4)2SO4 precipitation, Sephadex G-100 chromatography, Reactive Blue-agarose, Reactive Dye-agarose, DEAE-cellulose, preparative isoelectric focusing and non-inactivating SDS/PAGE. The active APSST, with a molecular mass of 102 kDa and multiple forms from pI 5.0 to 5.5, is a tetramer held together by covalent (probably disulphide) bonds. An apparent Km of the purified enzyme for adenosine 5'-phosphosulphate (APS) of 0.1 microM is obtained when dithiothreitol is used as the thiol. The enzyme is stimulated by Mg2+, Ca2+ or Ba2+, and uses almost any thiol; dithiothreitol and dithioerythritol give the highest activity. In the absence of APS, the enzyme is inactivated (and is rendered monomeric) by thiols but is protected from thiol inactivation by AMP, adenosine 5'-phosphoramidate (APA) or adenosine 5'-monosulphate (AMS), which also inhibit APSST activity somewhat. The enzyme resists inactivation by SDS in the absence of thiols; SDS stimulates APSST activity at low concentration, but high concentrations are inhibitory.
Collapse
Affiliation(s)
- J Y Li
- Department of Biology, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
18
|
Ultrastructural organization of secondary mutants ofEuglena gracilis induced by N-methyl-N′-nitro-N-nitrosoguanidine. Folia Microbiol (Praha) 1990. [DOI: 10.1007/bf02821412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Amir-Shapira D, Leustek T, Dalie B, Weissbach H, Brot N. Hsp70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. Proc Natl Acad Sci U S A 1990; 87:1749-52. [PMID: 2106681 PMCID: PMC53560 DOI: 10.1073/pnas.87.5.1749] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The heat-shock response of Euglena gracilis was studied by pulse-labeling cells with [35S]sulfate at both the normal growth temperature (21 degrees C) and an elevated temperature (36 degrees C). Analysis of the labeled proteins by polyacrylamide gel electrophoresis indicated that the rate of synthesis of at least 3 major and 15 minor polypeptides increased in cells grown at the higher temperature. Three of the proteins appear to be immunologically related to the ubiquitous approximately 70-kDa heat-shock protein (Hsp70) family. One protein of 68 kDa was found in the cytoplasm (P68cyt) and was the major heat-shock protein in Euglena gracilis. Two other proteins, 68 and 70 kDa, were localized in mitochondria (P68mit) and chloroplasts (P70chl), respectively, and they crossreacted with a polyclonal antibody raised against the Escherichia coli heat-shock protein DnaK. Like DnaK, P68mit and P70chl could be phosphorylated in vitro with [gamma-32P]ATP in a reaction that was stimulated by Ca2+. A protein with characteristics similar to those of P70chl was also found in chloroplasts isolated from maize and spinach.
Collapse
Affiliation(s)
- D Amir-Shapira
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Saidha T, Hanfstingl U, Schiff JA. Formation of tyrosine O-sulfate by mitochondria and chloroplasts of Euglena. Arch Biochem Biophys 1989; 272:237-44. [PMID: 2735764 DOI: 10.1016/0003-9861(89)90215-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondria that have been purified from cells of light-grown wild-type Euglena gracilis Klebs var. bacillaris Cori or dark-grown mutant W10BSmL and incubated with 35SO4(2-) and ATP accumulate a labeled compound in the surrounding medium. This compound is also labeled when mitochondria are incubated with [14C]tyrosine and nonradioactive sulfate under the same conditions. This compound shows exact coelectrophoresis with synthetic tyrosine O-sulfate at pH 2.0, 5.8, and 8.0, and yields sulfate and tyrosine on acid hydrolysis. Treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester; no hydrolysis of tyrosine methyl ester to tyrosine is observed under identical conditions, ruling out methyl esterase activity in the aryl sulfatase preparation. Thus the compound is identified as tyrosine O-sulfate. No tyrosine O-sulfate is found outside purified developing chloroplasts of Euglena incubated with 35SO4(2-) and ATP, but both chloroplasts and mitochondria accumulate labeled tyrosine-O-sulfate externally when incubated with adenosine 3'-phosphate 5'-phospho[35S]-sulfate (PAP35S). Since tyrosine does not need to be added, it must be provided from endogenous sources. Labeled tyrosine O-sulfate is found in the free pools of light-grown Euglena cells grown on 35SO4(2-) or in dark-grown cells incubated with 35SO4(2-) in light, but none is found in the medium after cell growth. No labeled tyrosine O-sulfate is found in Euglena proteins (including those in extracellular mucus) after growth or incubation of cells with 35SO4(2-) or after incubation of organelles with 35SO4(2-) and ATP or PAP35S, ruling out sulfation of the tyrosine in protein or incorporation of free-pool tyrosine O-sulfate into protein. The system forming tyrosine O-sulfate is membrane-bound and may be involved in transporting tyrosine out of the organelles.
Collapse
Affiliation(s)
- T Saidha
- Biology Department, Brandeis University, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
22
|
Saidha T, Schiff JA. The role of mitochondria in sulfolipid biosynthesis by Euglena chloroplasts. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0005-2760(89)90110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Abstract
We have previously shown that a sulphate activating system is present on the outside of the inner mitochondrial membrane of Euglena gracilis Klebs. var. bacillaris Cori, but efforts to couple this system to ATP produced from oxidative phosphorylation were unsuccessful. In the present work we show that the concentration of Pi ordinarily used to support oxidative phosphorylation in these mitochondria (10 mM) inhibits sulphate activation completely; by reducing the concentration of Pi 10-fold, both processes proceeded normally. Sulphate activation under these conditions is inhibited nearly completely by the uncouplers of oxidative phosphorylation dinitrophenol (0.1 mM) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) (0.2 microM). Sulphate reduction to form free cysteine, most of which appears outside the organelle, and in the cysteine of mitochondrial protein can be demonstrated in the same preparations, is membrane-bound and is inhibited by chloramphenicol (100 micrograms/ml), NaN3 (5 mM), KCN (100 microM); dinitrophenol (0.1 mM) or CCCP (0.2 microM). Digitonin fractionation of the mitochondria into mitoplasts, outer membranes and an intermembrane fraction show that reduction of 35SO4(2-) to form free cysteine and cysteine of protein is located on the mitoplasts; adenosine 5'-phosphosulphate sulphotransferase, the first enzyme of sulphate reduction, is found in the same location. Sulphate activation is highly enriched in the mitochondrial fraction of Euglena; the small amount found in the chloroplast fraction can be attributed to mitochondrial contamination. Thus, in Euglena, sulphate activation and reduction are contained in a sulphate metabolizing centre on the outside of the mitochondrial inner membrane; this centre appears to supply the mitochondrion and the rest of the cell with the products of sulphate activation as well as with reduced sulphur in the form of cysteine. Mitochondria from wild-type Euglena cells and from W10BSmL, a mutant lacking plastids completely, appear to be similar in the properties studied.
Collapse
Affiliation(s)
- T Saidha
- Biology Department, Brandies University, Waltham, MA 02254
| | | | | | | |
Collapse
|
24
|
Spano AJ, Schiff JA. Purification, properties, and cellular localization of Euglena ferredoxin-NADP reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 894:484-98. [PMID: 3120772 DOI: 10.1016/0005-2728(87)90128-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ferredoxin-NADP reductase from Euglena gracilis Klebs var. Bacillaris Cori purified to apparent homogeneity, yields a typical 36 kDa and an unusual 15 kDa polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exhibits a typical flavoprotein spectrum, contains FAD, and catalyzes NADPH-dependent iodonitrotetrazolium-violet diaphorase, NADPH-specific ferredoxin-dependent cytochrome-c-550 reductase and NADPH-NAD transhydrogenase activities. Rabbit antibody to the purified FNR blocks these activities specifically and also blocks the iodonitrotetrazolium-violet diaphorase activity of Euglena chloroplast completely. The low iodonitrotetrazolium-violet diaphorase activity in the plastidless mutant, W10BSmL, is mitochondrial and is not specifically blocked by the ferredoxin-NADP reductase antibody. Dark-grown non-dividing (resting) wild-type Euglena cells show a 4-fold increase in ferredoxin-NADP reductase activity during greening at 970 lx. Half of the low ferredoxin-NADP reductase activity in dark-grown cells is initially soluble, but by the end of chloroplast development nearly all of the enzyme is membrane-bound. The binding of ferredoxin-NADP reductase on exposure to light correlates with the extent of thylakoid membrane formation. Immunoblots of wild-type extracts during greening indicate that the 15 kDa polypeptide increases in the same manner as the extent of reductase binding to thylakoid membranes.
Collapse
Affiliation(s)
- A J Spano
- Institute for Photobiology, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
25
|
Tsukada S, Ehara T, Sumida S, Osafune T, Hase E. Behaviour of proplastids and their nucleoids in dark-organotrophically grown cells ofEuglena gracilistransferred to an inorganic medium. ACTA ACUST UNITED AC 1986. [DOI: 10.1080/00071618600650181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Saidha T, Stern AI, Lee DH, Schiff JA. Localization of a sulphate-activating system within Euglena mitochondria. Biochem J 1985; 232:357-65. [PMID: 3937518 PMCID: PMC1152887 DOI: 10.1042/bj2320357] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intact mitochondria, obtained from Euglena gracilis Klebs var. bacillaris Cori mutant W10BSmL, which lacks plastids, and purified on Percoll density gradients, form adenosine 3'-phosphate 5'-phosphosulphate from sulphate. The optimal conditions include addition of 17 mM-Tricine/KOH, pH 7.6, 18 mM-MgCl2, 250 mM-sucrose, 5.66 mM-sodium ADP (or 0.94 mM-sodium ATP), 1 mM-K2SO4, carrier-free 35SO4(2-) (32.1 microCi) and 1.0 mg of mitochondrial protein in a total volume of 2.65 ml and incubation at 30 degrees C. Experiments with the inhibitor of adenylate kinase P1, P5-di(adenosine 5'-)pentaphosphate indicate that ATP is the preferred substrate for sulphate activation; ADP is utilized by conversion into ATP via adenylate kinase. ATP sulphurylase, adenylylsulphate kinase (APS kinase) and inorganic pyrophosphatase constitute the sulphate-activating system; ADP sulphurylase is undetectable. Fractionation of Euglena mitochondria with digitonin and centrifugation allowed the separation of outer-membrane vesicles and mitoplasts as judged by electron microscopy and selected enzymic markers. The detergent-labile association of the sulphate-activating system with the mitoplasts (similar to that of adenylate kinase), the fact that most of the adenosine 3'-phosphate 5'-phosphosulphate formed by intact mitochondria is found in the surrounding medium, and the ease with which nucleotide substrates reach the activating system in intact organelles, suggest that the enzymes of sulphate activation are located on the outer surface of the mitochondrial inner membrane.
Collapse
|
27
|
Levine L, Sneiders A, Kobayashi T, Schiff JA. Serologic and immunochromatographic detection of oxygenated polyenoic acids in Euglena gracilis var. bacillaris. Biochem Biophys Res Commun 1984; 120:278-85. [PMID: 6424676 DOI: 10.1016/0006-291x(84)91445-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acetone extracts of Euglena gracilis Klebs var. bacillaris Cori contain several lipoxygenase and cyclooxygenase products as measured by radioimmuno-assay. Three times more of the serologically active products are found in cells grown in the dark than in cells grown in the light. Lack of coincidence of their retention times on high performance liquid chromatography with authentic oxygenation products of arachidonic acid suggest that most of the serologically active compounds are derivatives of polyenoic fatty acids other than arachidonic acid. Several fractions react with anti-12-hydroxyarachidonic acid (an antiserum that recognizes mono- and di-hydroxyarachidonic acids). Three of these fractions have UV absorption spectra characteristic of conjugated trienes.
Collapse
|