Satoh H, Ueda T, Kobatake Y. Oscillations in cell shape and size during locomotion and in contractile activities of Physarum polycephalum, Dictyostelium discoideum, Amoeba proteus and macrophages.
Exp Cell Res 1985;
156:79-90. [PMID:
3965294 DOI:
10.1016/0014-4827(85)90263-0]
[Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Changes in cell shape and size were measured during locomotion, together with the motive force of the protoplasmic streaming, in various amoeboid cells in different stages of their life cycle, and under various environmental conditions. The variations in these measurements with time were examined by Fourier spectral analysis. Notwithstanding a change in cell type in the life cycle of P. polycephalum, myxamoebae and tiny plasmodia showed a similar time pattern of locomotion, exhibiting oscillations having a mixture of several periods. A regular oscillation with protoplasmic streaming appeared in the plasmodium only above a critical cell size. D. discoideum amoebae oscillated with two periods of a few minutes in preaggregation stage, but with a period of 10 min in aggregation stage, the latter being induced by cAMP. Macrophages and A. proteus also oscillated with periods of a few minutes. Periods of all these oscillations were prolonged severalfold by respiratory inhibition with NaCN, but were unaffected by glycolytic inhibition with 2-deoxyglucose. Cell fragments of A. proteus containing fewer granules oscillated more slowly and with a larger amplitude than those containing more granules. Among the granules, the nucleus was excluded as a possible modifier of the oscillation. The oscillation in Physarum plasmodium was reversibly suppressed by combining respiratory and ATPase inhibitions in mitochondria with NaCN and oligomycin, intracellular ATP concentration being kept at an appropriate level. The present results show that amoeboid motility, as well as cell shape, is oscillatory and that mitochondria are involved in time keeping.
Collapse