1
|
Liu Y, Nan B, Niu J, Kapler GM, Gao S. An Optimized and Versatile Counter-Flow Centrifugal Elutriation Workflow to Obtain Synchronized Eukaryotic Cells. Front Cell Dev Biol 2021; 9:664418. [PMID: 33959616 PMCID: PMC8093812 DOI: 10.3389/fcell.2021.664418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Cell synchronization is a powerful tool to understand cell cycle events and its regulatory mechanisms. Counter-flow centrifugal elutriation (CCE) is a more generally desirable method to synchronize cells because it does not significantly alter cell behavior and/or cell cycle progression, however, adjusting specific parameters in a cell type/equipment-dependent manner can be challenging. In this paper, we used the unicellular eukaryotic model organism, Tetrahymena thermophila as a testing system for optimizing CCE workflow. Firstly, flow cytometry conditions were identified that reduced nuclei adhesion and improved the assessment of cell cycle stage. We then systematically examined how to achieve the optimal conditions for three critical factors affecting the outcome of CCE, including loading flow rate, collection flow rate and collection volume. Using our optimized workflow, we obtained a large population of highly synchronous G1-phase Tetrahymena as measured by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into nascent DNA strands, bulk DNA content changes by flow cytometry, and cell cycle progression by light microscopy. This detailed protocol can be easily adapted to synchronize other eukaryotic cells.
Collapse
Affiliation(s)
- Yongqiang Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bei Nan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhua Niu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Murata-Hori M, Fujishima M. Released substances from Tetrahymena thermophila arrest the cell cycle at G1 phase and removal of the substances induces highly synchronized cell division. Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80006-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Kaczanowski A, Kiersnowska M. Hereditary blocks in postconjugational oral morphogenesis in Tetrahymena thermophila. Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ward JG, Davis MC, Allis CD, Herrick G. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development. Genetics 1995; 140:989-1005. [PMID: 7672597 PMCID: PMC1206682 DOI: 10.1093/genetics/140.3.989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conjugation fails postzygotically after mating of Tetrahymena cells that have wild-type parental macronuclei but harbor noncomplementing nullisomic parental germline deficiencies. Failures begin shortly after formation of the new macronuclear precursor (anlage) and completion of the first step in elimination of the parental macronucleus (pycnosis). Conjugants fail to complete pair separation, to eliminate one new micronucleus, and to amplify anlage DNA, and they eventually die. Some deficiencies block resorption of the pycnotic parental macronucleus, but we find no evidence for its regeneration. Some deficiencies cause aberrant anlage DNA loss. Those that do not cause DNA loss are epistatic to those that do, indicating that normal anlage development requires the dependent function of at least two types of genes. The possibility that these genes are involved in developmentally regulated anlage DNA rearrangements is discussed. Each observed conjugation defect indicates insufficiency of the parental macronucleus to direct postzygotic development and can be explained by the deficiency of essential conjugation genes that are expressed from the anlage. The failure of nullisomic conjugants to complete pair separation indicates a requirement for gene products, expressed from the early anlage or its precursors, soon after anlage first differentiate.
Collapse
Affiliation(s)
- J G Ward
- University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
5
|
Brunk CF, Navas PA. Variable copy number of macronuclear DNA molecules in Tetrahymena. DEVELOPMENTAL GENETICS 1992; 13:111-7. [PMID: 1499152 DOI: 10.1002/dvg.1020130204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins.
Collapse
Affiliation(s)
- C F Brunk
- Biology Department and Molecular Biology Institute, University of California, Los Angeles
| | | |
Collapse
|
6
|
Kaczanowski A. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: early expression of the zygotic genotype. DEVELOPMENTAL GENETICS 1992; 13:58-65. [PMID: 1395143 DOI: 10.1002/dvg.1020130110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new recessive conjugation lethal mutation was found in Tetrahymena thermophila which was named mra for macronuclear resorption arrest. Other events affected by the mra mutations are separation of pairs, DNA replication in the macronuclear anlagen, and resorption of one of the two micronuclei. In wild-type crosses 50% of the pairs had separated by 12 hr after mixing two mating types and had completed resorption of the old macronucleus 1-2 hr later. In contrast most mra conjugants did not separate even by 24 hr after mixing and the old relic (condensed) macronucleus was seen in over 90% of them. After addition of 10 mM calcium to the conjugation medium, the mra conjugants did separate but they still failed to complete resorption of the old macronucleus and to replicate macronuclear anlagen DNA in the exconjugants. The calcium induced separation of the mra conjugants occurred later than the separation of control pairs. During normal conjugation cell separation occurs before the first expression of known macronuclear genes and prior to processing of the macronuclear DNA. Therefore, the mra phenotype infers that separation of conjugants requires a signal which is produced by the macronuclear anlagen at an unusually early time.
Collapse
Affiliation(s)
- A Kaczanowski
- Department of Cytology, University of Warsaw, Poland
| |
Collapse
|
8
|
Orias E, Larson D, Hu YF, Yu GL, Karttunen J, Løvlie A, Haller B, Blackburn EH. Replacement of the macronuclear ribosomal RNA genes of a mutant Tetrahymena using electroporation. Gene X 1988; 70:295-301. [PMID: 3215519 DOI: 10.1016/0378-1119(88)90201-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The macronucleus of the ciliate Tetrahymena contains approx. 10(4) ribosomal RNA gene molecules (rDNA) in the form of linear, autonomously replicating palindromes. Previous studies have shown that macronuclear rDNA molecules derived from wild-type (wt) inbred strain C3 out-replicate those derived from wt inbred strain B, in macronuclei initially heterozygous for both, leading to the complete loss of the B rDNA. However, rmm-1, a cis-acting laboratory-induced mutation obtained previously by mutagenesis of inbred strain C3, causes the mutant rmm-1 rDNA to be completely out-replicated by B rDNA. These findings suggest the following hierarchy of replication potential: wt C3 greater than wt B greater than C3-rmm-1. We used electroporation to test whether cells containing only rmm-1 macronuclear rDNA are favorable recipients for transformation with either wt B or C3 donor rDNA molecules. The donor rDNA molecules carried the selectable marker Pmr (paromomycin resistance) located in the coding region of the 17S rRNA. Transformants were obtained, at a frequency greater than 1 in 10(5), by electroporation under a wide range of electrical discharge parameters. The fraction of cells surviving electroporation varied between 2 and greater than 95% in successful experiments. Replacement ('transplacement') of the recipient rDNA was observed, consistent with the prediction that B and C3 rDNA should out-replicate rmm-1 rDNA. These findings are also consistent with the previous conclusion that the differential replication determinants reside in the 5'-nontranscribed spacer of the rDNA.
Collapse
Affiliation(s)
- E Orias
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yu GL, Hasson M, Blackburn EH. Circular ribosomal DNA plasmids transform Tetrahymena thermophila by homologous recombination with endogenous macronuclear ribosomal DNA. Proc Natl Acad Sci U S A 1988; 85:5151-5. [PMID: 2839832 PMCID: PMC281706 DOI: 10.1073/pnas.85.14.5151] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We transformed the ciliate Tetrahymena thermophila by microinjection of circular plasmids containing the ribosomal RNA gene (rDNA). In the somatic macronucleus of Tetrahymena, the rDNA is in the form of linear palindromic molecules. The rDNA molecules from the C3 strain have a replication advantage over rDNA from both B strain and the C3 rDNA mutant rmm1. We constructed two circular plasmids carrying replication origin sequences from C3 rDNA and a point mutation (Pmr) in the 17S rRNA gene that confers resistance to the antibiotic paromomycin. One plasmid contained a single complete copy of the rRNA gene and its flanking sequences, while the other had an additional rDNA origin of replication. In all B or rmm1 Tetrahymena cell lines transformed with the plasmids, rDNA sequences from the plasmid were found in palindromic rDNA molecules. In one transformant line, a small amount of the plasmid was also retained in a form with the original circular restriction map. Our results show that the plasmids underwent homologous recombination with one arm of the endogenous rDNA to give heteropalindromic rDNA, or with both arms of the palindrome to form homopalindromic rDNA. The resulting recombinant molecules were able to replace the recipient's original rDNA completely, providing strong evidence that C3 rDNA sequences in the donor DNAs confer a replication advantage over recipient rDNA. Thus microinjection of circular plasmids provides a method for replacement of an endogenous gene or gene fragment with exogenous sequences.
Collapse
Affiliation(s)
- G L Yu
- Department of Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
10
|
Conover RK, Brunk CF. Characterization of the macronuclear DNA of different species of Tetrahymena. J Mol Evol 1986; 24:143-51. [PMID: 3031319 DOI: 10.1007/bf02099962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The macronuclear DNAs from 20 different species of Tetrahymena were characterized using Alternating Orthogonal Field (AOF) gel electrophoresis. Each species has approximately 300 different macronuclear DNA molecules that range in size from about 100-2000 kb pairs. Although the individual macronuclear DNA molecules are not well resolved on an AOF gel, most species have a unique profile of macronuclear DNA. The sequences that hybridize with histone H4 (Tetrahymena) and ubiquitin (yeast) genes were identified on the separated macronuclear DNA molecules of the different species. All species have 2 histone H4 genes located on macronuclear DNA molecules of different sizes. This is consistent with the duplication of the histone H4 gene prior to the speciation events leading to the various species of Tetrahymena. The number and sizes of the macronuclear DNA molecules that hybridize with the ubiquitin probe vary from species to species. A grouping of the different species of Tetrahymena based on this hybridization pattern parallels groupings of the species based on ribosomal RNA sequences and isoenzymes. Some intraspecific variation among different strains of Tetrahymena thermophila was detected using ubiquitin and 5S ribosomal RNA as probes.
Collapse
|