1
|
Abstract
Two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) systems employing combinations of acetic acid/urea (AU), acetic acid/urea/Triton X-100 (AUT) and sodium dodecyl sulfate (SDS) gel formulations are uniquely effective for resolution of histone variants and their modified derivatives. Coupled with Western transfer methods using modification-specific antibodies and recent advances in mass spectrometry, 2D PAGE emerges as a versatile tool for histone purification and analysis. This chapter describes 2D PAGE gel systems appropriate for histone proteins, including detailed procedures for designing, running, and staining gels. Methods for electrophoretic transfer of histones from AUTxSDS and AUTxAU 2D gels are described and evaluated. Alternatively, methods are provided for obtaining highly purified protein samples from fixed and stained gels via electroelution of proteins from specific gel spots.
Collapse
Affiliation(s)
- George R Green
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, Atlanta, GA, USA
| | | |
Collapse
|
2
|
Green GR, Ferlita RR, Walkenhorst WF, Poccia DL. Linker DNA destabilizes condensed chromatin. Biochem Cell Biol 2001. [DOI: 10.1139/o01-115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.Key words: chromatin condensation, sea urchin sperm, chicken red blood cell, nuclei, linker DNA, histone variants, micrococcal nuclease, nucleosome, trypsin, gel electrophoresis.
Collapse
|
3
|
Green GR. Phosphorylation of histone variant regions in chromatin: Unlocking the linker? Biochem Cell Biol 2001. [DOI: 10.1139/o01-075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone variants illuminate the behavior of chromatin through their unique structures and patterns of postsynthetic modification. This review examines the literature on heteromorphous histone structures in chromatin, structures that are primary targets for histone kinases and phosphatases in vivo. Special attention is paid to certain well-studied experimental systems: mammalian culture cells, chicken erythrocytes, sea urchin sperm, wheat sprouts, Tetrahymena, and budding yeast. A common theme emerges from these studies. Specialized, highly basic structures in histone variants promote chromatin condensation in a variety of developmental situations. Before, and sometimes after condensed chromatin is formed, the chromatin is rendered soluble by phosphorylation of the heteromorphous regions, preventing their interaction with linker DNA. A simple structural model accounting for histone variation and phosphorylation is presented.Key words: phosphorylation, histone variants, chromatin, linker DNA.
Collapse
|
4
|
Moreira JC, Dal-Pizzol F, Rocha AB, Klamt F, Ribeiro NC, Ferreira CJ, Bernard EA. Retinol-induced changes in the phosphorylation levels of histones and high mobility group proteins from Sertoli cells. Braz J Med Biol Res 2000; 33:287-93. [PMID: 10719379 DOI: 10.1590/s0100-879x2000000300005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG) are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 microM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994) 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980) 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.
Collapse
Affiliation(s)
- J C Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| | | | | | | | | | | | | |
Collapse
|
5
|
Banerjee S, Smallwood A, Hultén M. ATP-dependent reorganization of human sperm nuclear chromatin. J Cell Sci 1995; 108 ( Pt 2):755-65. [PMID: 7769017 DOI: 10.1242/jcs.108.2.755] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomes in terminally differentiated mammalian spermatozoa are extensively condensed by protamines but a small proportion of histones remain. We examined the primary organization of somatic-type chromatin in lysolecithin-permeabilized human sperm nuclei and report that nucleosomes are closely packed with a periodicity of approximately 150 bp. Incubation of nuclei in the presence of exogenous Mg2+ and ATP induced chromatin reorganization leading to an increase in spacing of the nucleosomes to approximately 190 bp. This ATP-dependent chromatin rearrangement involved phosphorylation of both protamine and histone H2a. Increase in linker length between nucleosomes correlated with the phosphorylation of H2aX, the major H2a variant in human spermatozoa, predominantly at the C-terminal end. Chromatin reorganization was independent of detectable nuclear dispersion, which is an early chromosomal event in male pronuclear formation during fertilization.
Collapse
Affiliation(s)
- S Banerjee
- LFS Research Unit, DNA Laboratory, Birmingham Heartlands Hospital, UK
| | | | | |
Collapse
|
6
|
Carr AM, Dorrington SM, Hindley J, Phear GA, Aves SJ, Nurse P. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:628-35. [PMID: 7808414 DOI: 10.1007/bf00282226] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated and characterised the pht1 gene from the fission yeast Schizosaccharomyces pombe. The sequence of the predicted translation product has revealed a striking similarity to the family of H2A.F/Z histone variant proteins, which have been found in a variety of different organisms. Cells deleted for the pht1 gene locus grow slowly, exhibit an altered colony morphology, increased resistance to heat shock and show a significant decrease in the fidelity of segregation of an S. pombe minichromosome. We propose that the histone H2A variant encoded by the pht1 gene is important for chromosomal structure and function, possibly including a role in controlling the fidelity of chromosomal segregation during mitosis.
Collapse
Affiliation(s)
- A M Carr
- Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | |
Collapse
|
7
|
Ivanova V, Hatch C, Bonner W. Characterization of the human histone H2A.X gene. Comparison of its promoter with other H2A gene promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51067-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Green GR, Balhorn R, Poccia DL, Hecht NB. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev 1994; 37:255-63. [PMID: 8185929 DOI: 10.1002/mrd.1080370303] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mouse and rat seminiferous tubule fragment cultures were used to examine synthesis and processing of mammalian protamines and transition proteins. The tubule fragments were incubated with [3H]-arginine, [3H]-histidine, [35S]-cysteine, or [32P]-PO4, and radiolabeled proteins were analyzed by acid/urea polyacrylamide gel electrophoresis and fluorography or autoradiography. Newly synthesized protamines were recovered from sonication-resistant nuclei (SRN) and could not be detected in cytoplasmic fractions, indicating that protamines are deposited into nuclei immediately after synthesis. Newly synthesized mouse protamine 1 (mP1) and the precursor to mouse protamine 2 (pre-mP2) migrated more slowly during electrophoresis than their predominant testicular forms, identified by staining with Coomassie blue R-250. Within 1 hour of synthesis, the electrophoretic mobilities of mP1 and pre-mP2 increased to match those of their predominant forms. These changes are consistent with initial charge-neutralizing modifications of the newly synthesized protamines, followed by removal of at least some of the modifying ligands, to unmask protamine basicity. Steady-state phosphorylation rates were high for rat protamine 1 (rP1) and were independent of phosphate content; both rP1 molecules of low and high phosphate content were rapidly phosphorylated. Pre-mP2-3, a major processing intermediate derived by proteolysis of pre-mP2, was also rapidly phosphorylated. Like the protamines, transition protein 2 (TP2) was rapidly phosphorylated and increased in electrophoretic mobility soon after synthesis. In contrast, transition protein 1 (TP1) was not phosphorylated and did not exhibit multiple electrophoretic forms.
Collapse
Affiliation(s)
- G R Green
- Department of Biology, Amherst College, MA 01002
| | | | | | | |
Collapse
|
9
|
Histone H2A.X gene transcription is regulated differently than transcription of other replication-linked histone genes. Mol Cell Biol 1993. [PMID: 8423818 DOI: 10.1128/mcb.13.2.984] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H2A.X is a replication-independent histone H2A isoprotein species that is encoded by a transcript alternatively processed at the 3' end to yield two mRNAs: a 0.6-kb mRNA ending with the stem-loop structure characteristic of the mRNAs for replication-linked histone species, and a second, polyadenylated 1.6-kb mRNA ending about 1 kb further downstream (C. Mannironi, W. M. Bonner, and C. L. Hatch, Nucleic Acids Res. 17:9113-9126, 1989). Of the two, the 0.6-kb H2A.X stem-loop mRNA predominates in many cell lines, indicating that the presence of two types of mRNA may not completely account for the replication independence of H2A.X protein synthesis. The ambiguity is resolved by the finding that the level of the 0.6-kb H2A.X mRNA is only weakly downregulated during the inhibition of DNA replication and only weakly upregulated during the inhibition of protein synthesis, while the levels of other replication-linked mRNAs are strongly down- or upregulated under these two conditions. Analysis of the nuclear transcription rates of specific H2A genes showed that while the rates of transcription of replication-linked H2A genes decreased substantially during the inhibition of DNA synthesis and increased substantially during the inhibition of protein synthesis, the rate of H2A.X gene transcription decreased slightly under both conditions. These differences in transcriptional regulation between the H2A.X gene and other replication-linked histone genes are sufficient to account for the differences in regulation of their respective stem-loop mRNAs.
Collapse
|
10
|
Bonner WM, Mannironi C, Orr A, Pilch DR, Hatch CL. Histone H2A.X gene transcription is regulated differently than transcription of other replication-linked histone genes. Mol Cell Biol 1993; 13:984-92. [PMID: 8423818 PMCID: PMC358983 DOI: 10.1128/mcb.13.2.984-992.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Histone H2A.X is a replication-independent histone H2A isoprotein species that is encoded by a transcript alternatively processed at the 3' end to yield two mRNAs: a 0.6-kb mRNA ending with the stem-loop structure characteristic of the mRNAs for replication-linked histone species, and a second, polyadenylated 1.6-kb mRNA ending about 1 kb further downstream (C. Mannironi, W. M. Bonner, and C. L. Hatch, Nucleic Acids Res. 17:9113-9126, 1989). Of the two, the 0.6-kb H2A.X stem-loop mRNA predominates in many cell lines, indicating that the presence of two types of mRNA may not completely account for the replication independence of H2A.X protein synthesis. The ambiguity is resolved by the finding that the level of the 0.6-kb H2A.X mRNA is only weakly downregulated during the inhibition of DNA replication and only weakly upregulated during the inhibition of protein synthesis, while the levels of other replication-linked mRNAs are strongly down- or upregulated under these two conditions. Analysis of the nuclear transcription rates of specific H2A genes showed that while the rates of transcription of replication-linked H2A genes decreased substantially during the inhibition of DNA synthesis and increased substantially during the inhibition of protein synthesis, the rate of H2A.X gene transcription decreased slightly under both conditions. These differences in transcriptional regulation between the H2A.X gene and other replication-linked histone genes are sufficient to account for the differences in regulation of their respective stem-loop mRNAs.
Collapse
Affiliation(s)
- W M Bonner
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|