1
|
Schumacher GA, Pyle BR, Minchella DJ, Vannatta JT. Order and timing of infection with different parasite life stages impacts host and parasite life histories. Parasitol Res 2024; 123:187. [PMID: 38634931 DOI: 10.1007/s00436-024-08205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Co-exposure to multiple parasites can alter parasite success and host life history when compared to single infections. These infection outcomes can be affected by the order of parasite arrival, the host immune response, and the interspecific interactions among co-infecting parasites. In this study, we examined how the arrival order of two trematode parasites, Schistosoma mansoni and Echinostoma caproni, influenced parasite ecology and the life history of their snail host, Biomphalaria glabrata. Snail hosts were exposed to E. caproni cercariae before, with, and after their exposure to S. mansoni miracidia. We then measured the effects of this timing on infection prevalence, infection intensity of E. caproni metacercariae, and cercarial output of S. mansoni, as well as on snail reproduction and survival. Snails infected only with S. mansoni and snails exposed to E. caproni after S. mansoni both shed more cercariae than simultaneously exposed snails. Additionally, S. mansoni prevalence was lower in snails that were first exposed to E. caproni compared to snails that were exposed to E. caproni after S. mansoni. Moreover, snails exposed to E. caproni before S. mansoni did not differ in their survival compared to control snails, whereas simultaneously exposed snails and snails exposed to E. caproni after S. mansoni had lower survival than control snails. Combined, this prevalence and survival data suggest a potential protective role of early E. caproni exposure. The timing of E. caproni exposure impacts S. mansoni establishment and reproduction, but host survival patterns are likely driven by S. mansoni prevalence alone.
Collapse
Affiliation(s)
- Grace A Schumacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Bailey R Pyle
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dennis J Minchella
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - J Trevor Vannatta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biological and Health Sciences, Crown College, Saint Bonifacius, MN, USA
| |
Collapse
|
2
|
Alves TC, Queiroz FR, de Melo Neto AB, da Rocha Fernandes G, Pais FSM, de Jesus Jeremias W, Babá EH, de Moraes Mourão M, Morais ER, Cabral FJ, do Amaral LR, Caldeira RL, Zech Coelho PM, de Souza Gomes M. Identification and characterization of microRNAs in Biomphalaria tenagophila and comparative analysis of their expression in Schistosoma mansoni-resistant and -susceptible snail populations. Gene 2023; 884:147742. [PMID: 37634882 DOI: 10.1016/j.gene.2023.147742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by Schistosoma and affects over 240 million people worldwide. One of the most prominent causative agents is Schistosoma mansoni, which develops inside the intermediate host. Biomphalaria tenagophila is the second most important vector of schistosomiasis in Brazil and the Taim population is completely resistant to infection by S. mansoni. OBJECTIVE This study aims to identify and characterize B. tenagophila microRNAs (miRNAs) and evaluate their differential expression in S. mansoni-susceptible and -resistant populations of B. tenagophila. METHODS Two populations of B. tenagophila snails, susceptible and resistant to S. mansoni infection, were used to investigate the small RNA response of these snails after being infected with the parasite. Small RNA sequencing and quantitative real-time PCR were employed to identify and validate differentially expressed miRNAs. Bioinformatics analysis were performed to identify miRNA precursors and mature and evaluate their differential expression. FINDINGS The study predicted 173 mature miRNAs and 123 precursors. Among them were six Lophotrochozoa-specific miRNAs, three mollusk-specific miRNAs, and six pre-miRNAs in a cluster. The small RNA sequencing and RT-PCR of B. tenagophila samples allowed assessing the expression patterns of miRNAs. MAIN CONCLUSIONS The results obtained may support future studies in Biomphalaria spp., generating a global impact on disease control.
Collapse
Affiliation(s)
- Tamires Caixeta Alves
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Angelo Borges de Melo Neto
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | | | | - Elio Hideo Babá
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enyara Rezende Morais
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | | - Roberta Lima Caldeira
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Matheus de Souza Gomes
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil.
| |
Collapse
|
3
|
Bu L, Lu L, Laidemitt MR, Zhang SM, Mutuku M, Mkoji G, Steinauer M, Loker ES. A genome sequence for Biomphalaria pfeifferi, the major vector snail for the human-infecting parasite Schistosoma mansoni. PLoS Negl Trop Dis 2023; 17:e0011208. [PMID: 36961841 PMCID: PMC10075465 DOI: 10.1371/journal.pntd.0011208] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/05/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin Mutuku
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gerald Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michelle Steinauer
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
| | - Eric S Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
4
|
Aguoru NA, Kirk RS, Walker AJ. Molecular insights into the heat shock proteins of the human parasitic blood fluke Schistosoma mansoni. Parasit Vectors 2022; 15:365. [PMID: 36229862 PMCID: PMC9559072 DOI: 10.1186/s13071-022-05500-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background Heat shock proteins (HSPs) are evolutionarily conserved proteins, produced by cells in response to hostile environmental conditions, that are vital to organism homeostasis. Here, we undertook the first detailed molecular bioinformatic analysis of these important proteins and mapped their tissue expression in the human parasitic blood fluke, Schistosoma mansoni, one of the causative agents of the neglected tropical disease human schistosomiasis. Methods Using bioinformatic tools we classified and phylogenetically analysed HSP family members in schistosomes, and performed transcriptomic, phosphoproteomic, and interactomic analysis of the S. mansoni HSPs. In addition, S. mansoni HSP protein expression was mapped in intact parasites using immunofluorescence. Results Fifty-five HSPs were identified in S. mansoni across five HSP families; high conservation of HSP sequences were apparent across S. mansoni, Schistosoma haematobium and Schistosoma japonicum, with S. haematobium HSPs showing greater similarity to S. mansoni than those of S. japonicum. For S. mansoni, differential HSP gene expression was evident across the various parasite life stages, supporting varying roles for the HSPs in the different stages, and suggesting that they might confer some degree of protection during life stage transitions. Protein expression patterns of HSPs were visualised in intact S. mansoni cercariae, 3 h and 24 h somules, and adult male and female worms, revealing HSPs in the tegument, cephalic ganglia, tubercles, testes, ovaries as well as other important organs. Analysis of putative HSP protein-protein associations highlighted proteins that are involved in transcription, modification, stability, and ubiquitination; functional enrichment analysis revealed functions for HSP networks in S. mansoni including protein export for HSP 40/70, and FOXO/mTOR signalling for HSP90 networks. Finally, a total of 76 phosphorylation sites were discovered within 17 of the 55 HSPs, with 30 phosphorylation sites being conserved with those of human HSPs, highlighting their likely core functional significance. Conclusions This analysis highlights the fascinating biology of S. mansoni HSPs and their likely importance to schistosome function, offering a valuable and novel framework for future physiological investigations into the roles of HSPs in schistosomes, particularly in the context of survival in the host and with the aim of developing novel anti-schistosome therapeutics. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05500-7.
Collapse
Affiliation(s)
- Nancy A Aguoru
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK.
| |
Collapse
|
5
|
Laidemitt MR, Gleichsner AM, Ingram CD, Gay SD, Reinhart EM, Mutuku MW, Oraro P, Minchella DJ, Mkoji GM, Loker ES, Steinauer ML. Host preference of field‐derived
Schistosoma mansoni
is influenced by snail host compatibility and infection status. Ecosphere 2022; 13. [PMID: 36285193 PMCID: PMC9592064 DOI: 10.1002/ecs2.4004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosome parasites cause a chronic inflammatory disease in humans, and recent studies have emphasized the importance of control programs for understanding the aquatic phases of schistosomiasis transmission. The host-seeking behavior of larval schistosomes (miracidia) for their snail intermediate hosts plays a critical role in parasite transmission. Using field-derived strains of Kenyan snails and parasites, we tested two main hypotheses: (1) Parasites prefer the most compatible host, and (2) parasites avoid hosts that are already infected. We tested preference to three Biomphalaria host snail taxa (B. pfeifferi, B. sudanica, and B. choanomphala), using allopatric and sympatric Schistosoma mansoni isolates and two different nonhost snail species that co-occur with Biomphalaria, Bulinus globosus, and Physa acuta. We also tested whether schistosomes avoid snail hosts that are already infected by another trematode species and whether competitive dominance played a role in their behavior. Preference was assessed using two-way choice chambers and by visually counting parasites that moved toward competing stimuli. In pairwise comparisons, we found that S. mansoni did not always prefer the more compatible snail taxon, but never favored an incompatible host over a compatible host. While parasites preferred B. pfeifferi to the nonhost species B. globosus, they did not significantly prefer B. pfeifferi versus P. acuta, an introduced species in Kenya. Finally, we demonstrated that parasites avoid infected snails if the resident parasite was competitively dominant (Patagifer sp.), and preferred snails infected with subordinates (xiphidiocercariae) to uninfected snails. These results provide evidence of “fine tuning” in the ability of schistosome miracidia to detect hosts; however, they did not always select hosts that would maximize fitness. Appreciating such discriminatory abilities could lead to a better understanding of how ecosystem host and parasite diversity influences disease transmission and could provide novel control mechanisms to improve human health.
Collapse
Affiliation(s)
- Martina R. Laidemitt
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Alyssa M. Gleichsner
- Department of Biological Sciences State University of New York, College at Plattsburgh Plattsburgh New York USA
| | - Christopher D. Ingram
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | - Steven D. Gay
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | | | - Martin W. Mutuku
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Polycup Oraro
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Dennis J. Minchella
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| |
Collapse
|
6
|
Malishev M, Civitello DJ. Modelling how resource competition among snail hosts affects the mollusciciding frequency and intensity needed to control human schistosomes. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Maciel LF, Morales-Vicente DA, Verjovski-Almeida S. Dynamic Expression of Long Non-Coding RNAs Throughout Parasite Sexual and Neural Maturation in Schistosoma japonicum. Noncoding RNA 2020; 6:E15. [PMID: 32244675 PMCID: PMC7344908 DOI: 10.3390/ncrna6020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.
Collapse
Affiliation(s)
- Lucas F. Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - David A. Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| |
Collapse
|
8
|
Sullivan J, Banoub M, Tellechea N. NEONATAL SUSCEPTIBILITY TO INFECTION WITH SCHISTOSOMA MANSONI IN RESISTANT BIOMPHALARIA GLABRATA. J Parasitol 2020; 106:430337. [PMID: 32227217 DOI: 10.1645/19-144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
The laboratory BS-90 strain of the freshwater pulmonate snail Biomphalaria glabrata, progeny of snails collected from Salvador, Brazil, is resistant to infection with Schistosoma mansoni as juveniles or adults, which rapidly kill primary sporocysts with an attack by the internal defense system (IDS). However, neonatal snails are susceptible to infection. Although neonatal susceptibility of Salvador B. glabrata was reported in 1953 and confirmed subsequently, this phenomenon has been largely ignored. In this study, susceptibility was examined in discrete sizes (shell diameters) of BS-90 snails. We found that 1 mm snails are highly susceptible and develop patent infections. Unexpectedly, most infected 1 mm snails contain primary sporocysts in the digestive gland. Snails measuring 2 and 3 mm show reduced prevalence of infection, and 4 mm and larger snails are refractory. In snails larger than 1 mm, sporocysts fail to develop normally, as shown by reduced numbers of germinal cells at 48 hr post exposure. Moreover, in larger snails an increasingly stronger response of the IDS is mounted in the form of increased numbers of sporocysts undergoing encapsulation and destruction by hemocytes, increased layers of encapsulating hemocytes, as well as increased mitotic activity of the hematopoietic amebocyte-producing organ. These results indicate a relatively narrow size range over which resistance develops and suggest that the IDS of 1 mm snails is developmentally immature. The occurrence of infections in neonatal snails may help to explain transmission of schistosomiasis in regions of low snail susceptibility and may complicate future efforts in biological control.
Collapse
Affiliation(s)
- John Sullivan
- University of San Francisco Professor Biology 2130 Fulton Street UNITED STATES San Francisco CA 94117 412-422-6363 415- 422-5975 University of San Francisco
- 0000-0002-6190-3663
| | - Mariam Banoub
- Department of Biology, University of San Francisco, San Francisco, California 94117. Correspondence should be sent to John T. Sullivan at:
| | - Nicholas Tellechea
- Department of Biology, University of San Francisco, San Francisco, California 94117. Correspondence should be sent to John T. Sullivan at:
| |
Collapse
|
9
|
Maciel LF, Morales-Vicente DA, Silveira GO, Ribeiro RO, Olberg GGO, Pires DS, Amaral MS, Verjovski-Almeida S. Weighted Gene Co-Expression Analyses Point to Long Non-Coding RNA Hub Genes at Different Schistosoma mansoni Life-Cycle Stages. Front Genet 2019; 10:823. [PMID: 31572441 PMCID: PMC6752179 DOI: 10.3389/fgene.2019.00823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules’ networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.
Collapse
Affiliation(s)
- Lucas F Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - David A Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilbert O Silveira
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Raphael O Ribeiro
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna G O Olberg
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - David S Pires
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Murilo S Amaral
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Protein extract from head-foot tissue of Oncomelania hupensis promotes the growth and development of mother sporocysts of Schistosoma japonicum via upregulation of parasite aldolase gene. Parasitol Res 2019; 118:1821-1831. [PMID: 31011809 DOI: 10.1007/s00436-019-06308-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Previous studies showed that protein extract from head-foot tissue of Oncomelania hupensis (O. hupensis) (PhfO), when cocultured with mother sporocysts of Schistosoma japonicum (S. japonicum), was beneficial for parasite's growth and development but the underlying mechanisms remain unclear. One possible strategy for PhfO to promote the growth and development of mother sporocysts of S. japonicum is to upregulate parasite's survival genes. Fructose-1,6-bisphosphate aldolase (ALD), an essential enzyme of glycometabolism in the energy metabolism process, plays an important role in the survival and the growth and development of schistosomes. Using an in vitro coculture system, in this study, we analyzed the potential involvement of the ald gene in the growth and development of mother sporocysts of S. japonicum following coculture with PhfO. We found that coculture with PhfO promoted the growth and development and the survival of mother sporocysts, and increased parasites' ATP consumption level. Mother sporocysts cocultured with PhfO showed a significantly increased expression of the ald gene at both RNA and protein levels. The ALD protein mainly expressed in the cytoplasm of mother sporocysts. Knockdown of ald gene in parasites decreased the ALD protein expression and the ATP consumption level, suppressed the growth and development, and attenuated the survival of mother sporocysts. In ald knockdown mother sporocysts, the effects of PhfO on the ALD expression, the ATP consumption level, the growth and development, and the survival of larvae were significantly abolished. Therefore, the data suggest that PhfO could promote the growth and development, and the survival of mother sporocysts of S. japonicum via upregulating the expression of the ald gene.
Collapse
|
11
|
Lima MG, Montresor LC, Pontes J, Augusto RDC, da Silva JP, Thiengo SC. Compatibility Polymorphism Based on Long-Term Host-Parasite Relationships: Cross Talking Between Biomphalaria glabrata and the Trematode Schistosoma mansoni From Endemic Areas in Brazil. Front Immunol 2019; 10:328. [PMID: 31024517 PMCID: PMC6467164 DOI: 10.3389/fimmu.2019.00328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Sympatric snail populations have been kept in the laboratory since the isolation of the parasite from the field. To evaluate the influence of the intermediate host in the infectivity of S. mansoni, this allopatric strain was compared to two sympatric strains, from different geographical origins, and with different time of maintenance in the laboratory. Snail–trematode compatibility was accessed for a total of nine possible combinations (three snail populations, three schistosome strains), using different charges of parasite: 1, 5, 10, and 15 miracidia/snail. Each S. mansoni strain was characterized according to its infectivity phenotype that reflects the efficiency of their infection mechanism and all B. glabrata populations were characterized according to its (in)compatible phenotype that reflects the level of (un)susceptibility they display. For all host-parasite combinations tested the dose-response relation indicated a trend for an increase in the infectivity of S. mansoni when higher miracidial doses were used. SmRES-2 presented the highest overall infectivity rate, especially in the SmRES-2/BgRES interaction with 15 miracidia/snail. However, SmRES was more infective to BgBAR than SmRES-2, indicating that SmRES strain was more infective at the first contact with this new host than after 2 years of interaction (SmRES-2). BgBAR presented the highest susceptibility to infection. SmRES and SmRES-2 are the same parasite strains. It seems that during these 2 years of interaction, BgBAR acted like a filter and shifted the compatibility polymorphism of the strain SmRES. SmRES-2 became more infective to BgRES (sympatric) than to BgBAR (allopatric), and conversely, SmRES was more infective to BgBAR (allopatric) than to BgRES (sympatric). This interplay suggests that epigenetic mechanisms are prompting these changes. This study concerns with infection of B. glabrata snails from different Brazilian localities with S. mansoni in allopatric and sympatric associations that will partially help in understanding the natural epidemiology of schistosomiasis within natural snail populations in watercourses. This work demonstrates that there is a shift on the compatibility polymorphism profile resulting from sympatric and allopatric interactions of B. glabrata and S. mansoni that constantly change during the time of interaction.
Collapse
Affiliation(s)
- Mariana G Lima
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Lângia C Montresor
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Joana Pontes
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Ronaldo de C Augusto
- UMR 5244 Univ Perpignan via Domitia-CNRS-IFREMER-Univ Montpellier, Interactions Hôtes-Pathògenes-Environnements (IHPE), Université de Perpignan via Domitia, Perpignan, France
| | - Jairo Pinheiro da Silva
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Silvana C Thiengo
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
13
|
Sullivan JT. Reversal of Schistosome Resistance In Biomphalaria glabrata By Heat Shock May Be Dependent On Snail Genotype. J Parasitol 2018; 104:407-412. [PMID: 29648939 DOI: 10.1645/17-110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several genes have recently been shown to affect the innate resistance of laboratory strains of Biomphalaria glabrata to infection with Schistosoma mansoni, including Hsp90, the expression of which following a brief exposure to elevated temperature can interfere with resistance in juvenile BS-90 snails. Because a prior study failed to see a similar effect in adult snails, juvenile BS-90 snails were exposed to 10 or 50 miracidia following a 4.5 to 6 hr incubation at 33 or 37 C. Snails were then monitored for production of secondary sporocysts or release of cercariae. In addition, snails exposed to 33 C were examined histologically between 1 and 15 days post exposure (DPE) to 30 miracidia to assess the fate of primary sporocysts. Other than elevated numbers of viable primary sporocysts in the tissues of heat shocked snails at 3 DPE, no statistically significant effect of elevated temperature was observed. This discrepancy with regard to prior studies is hypothesized to result from genetic divergence in different laboratory colonies of the same strain of snail.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, California 94117
| |
Collapse
|
14
|
Portet A, Pinaud S, Tetreau G, Galinier R, Cosseau C, Duval D, Grunau C, Mitta G, Gourbal B. Integrated multi-omic analyses in Biomphalaria-Schistosoma dialogue reveal the immunobiological significance of FREP-SmPoMuc interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:16-27. [PMID: 28257854 DOI: 10.1016/j.dci.2017.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 05/16/2023]
Abstract
The fresh water snail Biomphalaria glabrata is one of the vectors of the trematode pathogen Schistosoma mansoni, which is one of the agents responsible of human schistosomiasis. In this host-parasite interaction, co-evolutionary dynamic results into an infectivity mosaic known as compatibility polymorphism. Integrative approaches including large scale molecular approaches have been conducted in recent years to improve our understanding of the mechanisms underlying compatibility. This review presents the combination of integrated Multi-Omic approaches leading to the discovery of two repertoires of polymorphic and/or diversified interacting molecules: the parasite antigens S. mansoni polymorphic mucins (SmPoMucs) and the B. glabrata immune receptors fibrinogen-related proteins (FREPs). We argue that their interactions may be major components for defining the compatible/incompatible status of a specific snail/schistosome combination.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Guillaume Tetreau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
15
|
Alberson NR, Rosser TG, Buddenborg SK, Khoo LH, Loker ES, Richardson TD, Woodyard ET, Wise DJ, Pote LM, Griffin MJ. North and South American Haplotypes ofDrepanocephalus auritus(Digenea: Echinostomatidae) Are Released fromBiomphalaria havanensis(Mollusca: Planorbidae) Inhabiting Catfish Aquaculture Ponds in Mississippi, U.S.A. COMP PARASITOL 2017. [DOI: 10.1654/1525-2647-84.2.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neely R. Alberson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A. (e-mail: )
| | - Thomas G. Rosser
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A. (e-mail: )
| | - Sarah K. Buddenborg
- Department of Biology, University of New Mexico, 1 University of New Mexico, Albuquerque, New Mexico 81731, U.S.A.
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, 127 Experiment Station Road, Stoneville, Mississippi 38776, U.S.A.
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A
| | - Eric S. Loker
- Department of Biology, University of New Mexico, 1 University of New Mexico, Albuquerque, New Mexico 81731, U.S.A.
| | - Terry D. Richardson
- Department of Biology, University of North Alabama, 459 North Court Street, Florence, Alabama 35632, U.S.A.
| | - Ethan T. Woodyard
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A. (e-mail: )
| | - David J. Wise
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, 127 Experiment Station Road, Stoneville, Mississippi 38776, U.S.A.
| | - Linda M. Pote
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A. (e-mail: )
| | - Matt J. Griffin
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, 127 Experiment Station Road, Stoneville, Mississippi 38776, U.S.A.
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, Mississippi 39762, U.S.A
| |
Collapse
|
16
|
Grosholz ED. THE EFFECTS OF HOST GENOTYPE AND SPATIAL DISTRIBUTION ON TREMATODE PARASITISM IN A BIVALVE POPULATION. Evolution 2017; 48:1514-1524. [PMID: 28568423 DOI: 10.1111/j.1558-5646.1994.tb02193.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1993] [Accepted: 11/11/1993] [Indexed: 11/29/2022]
Abstract
A basic assumption underlying models of host-parasite coevolution is the existence of additive genetic variation among hosts for resistance to parasites. However, estimates of additive genetic variation are lacking for natural populations of invertebrates. Testing this assumption is especially important in view of current models that suggest parasites may be responsible for the evolution of sex, such as the Red Queen hypothesis. This hypothesis suggests that the twofold reproductive disadvantage of sex relative to parthenogenesis can be overcome by the more rapid production of rare genotypes resistant to parasites. Here I present evidence of significant levels of additive genetic variance in parasite resistance for an invertebrate host-parasite system in nature. Using families of the bivalve mollusc, Transennella tantilla, cultured in the laboratory, then exposed to parasites in the field, I quantified heritable variation in parasite resistance under natural conditions. The spatial distribution of outplanted hosts was also varied to determine environmental contributions to levels of parasite infection and to estimate potential interactions of host genotype with environment. The results show moderate but significant levels of heritability for resistance to parasites (h2 = 0.36). The spatial distribution of hosts also significantly influenced parasite prevalence such that increased host aggregation resulted in decreased levels of parasite infection. Family mean correlations across environments were positive, indicating no genotype-environment interaction. Therefore, these results provide support for important assumptions underlying coevolutionary models of host-parasite systems.
Collapse
Affiliation(s)
- Edwin D Grosholz
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington, 98195
| |
Collapse
|
17
|
Lively CM. ADAPTATION BY A PARASITIC TREMATODE TO LOCAL POPULATIONS OF ITS SNAIL HOST. Evolution 2017; 43:1663-1671. [DOI: 10.1111/j.1558-5646.1989.tb02616.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1989] [Accepted: 08/22/1989] [Indexed: 11/30/2022]
Affiliation(s)
- Curtis M. Lively
- Department of Zoology University of Canterbury Cristchurch 1 NEW ZEALAND
| |
Collapse
|
18
|
Galinier R, Tetreau G, Portet A, Pinaud S, Duval D, Gourbal B. First characterization of viruses from freshwater snails of the genus Biomphalaria, the intermediate host of the parasite Schistosoma mansoni. Acta Trop 2017; 167:196-203. [PMID: 28012902 DOI: 10.1016/j.actatropica.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022]
Abstract
We report the genome sequence and organization of five viruses infecting snails of both Biomphalaria glabrata and Biomphalaria pfeifferi, which are vectors of the intestinal schistosomiasis. Four viruses presented a polyadenylated positive single strand RNA genome encoding one or two large open reading frames (ORFs) flanked by untranslated region. Conserved protein motifs typical of the picorna-like virus superfamily were identified in these viruses but they all presented different genome organization. Phylogenetic analysis confirmed their assignment to this superfamily. The partially characterized fifth virus presented sequence similarity for Totiviridae, a family of non-polyadenylated double-strand RNA viruses. Virus distribution and relative abundance between the five strains of Biomphalaria originating from different geographical areas was determined. Our results provide valuable information of new viruses from Biomphalaria and pave the way for future studies dedicated to their impact on snail fitness and Biomphalaria/Schistosoma interactions.
Collapse
|
19
|
Gibson AK, Jokela J, Lively CM. Fine-Scale Spatial Covariation between Infection Prevalence and Susceptibility in a Natural Population. Am Nat 2016; 188:1-14. [PMID: 27322117 DOI: 10.1086/686767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The prevalence of infection varies dramatically on a fine spatial scale. Many evolutionary hypotheses are founded on the assumption that this variation is due to host genetics, such that sites with a high frequency of alleles conferring susceptibility are associated with higher infection prevalence. This assumption is largely untested and may be compromised at finer spatial scales where gene flow between sites is high. We put this assumption to the test in a natural snail-trematode interaction in which host susceptibility is known to have a strong genetic basis. A decade of field sampling revealed substantial spatial variation in infection prevalence between 13 sites around a small lake. Laboratory assays replicated over 3 years demonstrate striking variation in host susceptibility among sites in spite of high levels of gene flow between sites. We find that mean susceptibility can explain more than one-third of the observed variation in mean infection prevalence among sites. We estimate that variation in susceptibility and exposure together can explain the majority of variation in prevalence. Overall, our findings in this natural host-parasite system argue that spatial variation in infection prevalence covaries strongly with variation in the distribution of genetically based susceptibility, even at a fine spatial scale.
Collapse
|
20
|
Tennessen JA, Bonner KM, Bollmann SR, Johnstun JA, Yeh JY, Marine M, Tavalire HF, Bayne CJ, Blouin MS. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0004077. [PMID: 26372103 PMCID: PMC4570800 DOI: 10.1371/journal.pntd.0004077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails. METHODOLOGY/PRINCIPAL FINDINGS Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2 Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated. CONCLUSIONS/SIGNIFICANCE The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Kaitlin M. Bonner
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joel A. Johnstun
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jan-Ying Yeh
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Marine
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Hannah F. Tavalire
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher J. Bayne
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
21
|
Tennessen JA, Théron A, Marine M, Yeh JY, Rognon A, Blouin MS. Hyperdiverse gene cluster in snail host conveys resistance to human schistosome parasites. PLoS Genet 2015; 11:e1005067. [PMID: 25775214 PMCID: PMC4361660 DOI: 10.1371/journal.pgen.1005067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 01/07/2023] Open
Abstract
Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails. Schistosomes are water-borne blood-flukes that are transmitted by snail vectors. They infect over 200 million people in more than 70 countries and cause severe and chronic disability. Snails naturally vary in resistance to this parasite even within species, so bolstering snail resistance in the wild would block transmission. We artificially selected snails for resistance and observed a rapid evolutionary response, with the greatest change occurring in the same genomic region in two independent trials. We subsequently confirmed that the selected haplotype conveys resistance to infection by schistosomes. The extraordinarily high sequence divergence among haplotypes in this region appears to be elevated due to ongoing natural selection, likely via host-parasite co-evolution. We observed the highest variation in genes encoding putative parasite recognition proteins, suggesting that these control the resistance phenotype in a manner reminiscent of immune gene complexes in other taxa. Thus, this gene cluster presents a potential new target to interfere with parasite transmission at the vector stage.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - André Théron
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan Via Domitia, Perpignan, France
| | - Melanie Marine
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jan-Ying Yeh
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Anne Rognon
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan Via Domitia, Perpignan, France
| | - Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
22
|
Adema CM, Loker ES. Digenean-gastropod host associations inform on aspects of specific immunity in snails. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:275-83. [PMID: 25034871 PMCID: PMC4258543 DOI: 10.1016/j.dci.2014.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 05/16/2023]
Abstract
Gastropod immunology is informed importantly by the study of the frequent encounters snails endure with digeneans (digenetic trematodes). One of the hallmarks of gastropod-digenean associations is their specificity: any particular digenean parasite species is transmitted by a limited subset of snail taxa. We discuss the nature of this specificity, including its immunological basis. We then review studies of the model gastropod Biomphalaria glabrata indicating that the baseline responses of snails to digeneans can be elevated in a specific manner. Studies incorporating molecular and functional approaches are then highlighted, and are further suggestive of the capacity for specific gastropod immune responses. These studies have led to the compatibility polymorphism hypothesis: the interactions between diversified fibrinogen-related proteins (FREPs) and diverse carbohydrate-decorated polymorphic parasite antigens determine recognition and trigger specific immunity. Complex glycan structures are also likely to play a role in the host specificity typifying snail-digenean interactions. We conclude by noting the dynamic and consequential interactions between snails and digeneans can be considered as drivers of diversification of digenean parasites and in the development and maintenance of specific immunity in gastropods.
Collapse
Affiliation(s)
- C M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - E S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
23
|
Gorbushin AM, Borisova EA. Himasthla elongata: Implantation of rediae to the specific iteroparous long-living host, Littorina littorea, results in the immune rejection. FISH & SHELLFISH IMMUNOLOGY 2014; 39:432-438. [PMID: 24931625 DOI: 10.1016/j.fsi.2014.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
All semelparous short-lived gastropods studied so far for the experimental transplantation of trematode parthenitae, from one specific host to another, showed more or less successful acceptance of implanted parasites. We implanted echinostomatid rediae, Himasthla elongata, to the specific iteroparous long-living host, coenogastropod Littorina littorea. Using simple and low-invasive implantation techniques we have tested 680 snails injected with 75 redia microhemipopulations (MHP) harvested from naturally infected snails. Neither young nor mature rediae were able to survive in the recipient periwinkles in the course of 30 days post-implantation. A strong immune response from the host was already evident within the first week after implantation: initial inactivation of motile rediae with toxic humoral immune factors, following encapsulation of the implants and increased hemocyte counts. In contrast, rediae from the same MHPs showed perfect survival rates in primary in vitro axenic cultures. The failure of the transplantation experiments is explained in terms of the compatibility matching phenotype model. In the studied host-parasite combination all periwinkles are potentially susceptible and all rediae MHPs are potentially infective, however the probability of the compatible phenotypes matching is virtually low. Low investment in L. littorea annual reproduction would result in increased investment in self maintenance and immune mechanisms, causing the general resistance to the trematode infestation. Presumably, this resistance is relatively higher in long-lived iteroparous gastropods compare to semelparous short-lived mollusks such as pulmonates.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), St-Petersburg, Russia.
| | - Elena A Borisova
- Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS), St-Petersburg, Russia
| |
Collapse
|
24
|
Theron A, Rognon A, Gourbal B, Mitta G. Multi-parasite host susceptibility and multi-host parasite infectivity: a new approach of the Biomphalaria glabrata/Schistosoma mansoni compatibility polymorphism. INFECTION GENETICS AND EVOLUTION 2014; 26:80-8. [PMID: 24837670 DOI: 10.1016/j.meegid.2014.04.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 11/15/2022]
Abstract
In this study, we analyze the degree of susceptibility/un-susceptibility of five strains of Biomphalaria glabrata from different geographical origins successively challenged with a panel of 4 Schistosoma mansoni strains. A total of 20 homopatric and heteropatric host-parasite combinations were tested with exposure doses of 1, 10, 20, 30 and 50 miracidia per individual host. By doing this, we characterized each B. glabrata strain by its "multi-parasite susceptibility phenotype" that reflects better the efficiency of their defense mechanism against not only one, but a diversity of schistosome stocks. In the same time, all the S. mansoni strains used were characterized, by their "multi-host infectivity phenotype" that reflects the level of infectivity they display when confronted to diverse snail populations. Based on these results it is possible to select different homogenous stocks of snails with different spectrum of susceptibility/un-susceptibility for several parasite strains. This will be a useful tool for future functional studies conducted to understand the genetics and molecular basis of the compatibility polymorphism in this host/parasite model.
Collapse
Affiliation(s)
- A Theron
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan, France; Université de Perpignan via Domitia, 52, Ave Paul Alduy, 66860 Perpignan Cedex, France.
| | - A Rognon
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan, France; Université de Perpignan via Domitia, 52, Ave Paul Alduy, 66860 Perpignan Cedex, France
| | - B Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan, France; Université de Perpignan via Domitia, 52, Ave Paul Alduy, 66860 Perpignan Cedex, France
| | - G Mitta
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan, France; Université de Perpignan via Domitia, 52, Ave Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
25
|
Ye Q, Dong HF, Grevelding CG, Hu M. In vitro cultivation of Schistosoma japonicum-parasites and cells. Biotechnol Adv 2013; 31:1722-37. [DOI: 10.1016/j.biotechadv.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/27/2022]
|
26
|
Nacif-Pimenta R, de Mattos ACA, Orfanó ADS, Barbosa L, Pimenta PFP, Coelho PMZ. Schistosoma mansoni in susceptible and resistant snail strains Biomphalaria tenagophila: in vivo tissue response and in vitro hemocyte interactions. PLoS One 2012; 7:e45637. [PMID: 23049828 PMCID: PMC3458097 DOI: 10.1371/journal.pone.0045637] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is highly prevalent, especially in developing countries. Biomphalaria tenagophila is an important invertebrate host of Schistosoma mansoni in Brazil, with some strains (e.g. Cabo Frio) being highly susceptible to the parasite, whereas others (e.g. Taim) are completely resistant to infection. Therefore, B. tenagophila is an important research model for studying immune defense mechanisms against S. mansoni. The internal defense system (IDS) of the snail comprises hemocytes and hemolymph factors acting together to recognize self from non-self molecular patterns to eliminate the threat of infection. We performed experiments to understand the cellular defenses related to the resistance and/or susceptibility of B. tenagophila to S. mansoni. During the early stages of infection, fibrous host cells of both snail strains were arranged as a thin layer surrounding the sporocysts. However, at later stages of infection, the cellular reactions in resistant snails were increasingly more intense, with thicker layers surrounding the parasites, in contrast to susceptible strains. All parasites were damaged or destroyed inside resistant snails after 10 h of infection. By contrast, parasites inside susceptible snails appeared to be morphologically healthy. We also performed experiments using isolated hemocytes from the two strains interacting with sporocysts. Hemocyte attachment started as early as 1 h after initial infection in both strains, but the killing of sporocysts was exclusive to hemocytes from the resistant strain and was time course dependent. The resistant strain was able to kill all sporocysts. In conclusion, our study revealed important aspects of the initial process of infection related to immune defense responses of strains of B. tenagophila that were resistant to S. mansoni compared with strains that were susceptible. Such information is relevant for the survival or death of the parasites and so is important in the development of control measures against this parasite.
Collapse
Affiliation(s)
- Rafael Nacif-Pimenta
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, Brasil
| | | | | | - Luciene Barbosa
- Laboratório de Entomologia e Parasitologia Tropical - Universidade Federal de Sergipe, Aracajú, Brasil
| | | | - Paulo Marcos Zech Coelho
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, Brasil
- * E-mail:
| |
Collapse
|
27
|
Interaction of Schistosoma mansoni Sporocysts and Hemocytes of Biomphalaria. J Parasitol Res 2012; 2012:743920. [PMID: 22811885 PMCID: PMC3395257 DOI: 10.1155/2012/743920] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/18/2012] [Indexed: 12/11/2022] Open
Abstract
Human infection by Schistosoma mansoni affects more than 100 million people worldwide, most often in populations of developing countries of Africa, Asia, and Latin America. The transmission of S. mansoni in human populations depends on the presence of some species of Biomphalaria that act as an intermediate host. The compatibility between S. mansoni and its intermediate host is influenced by behavioral, physiological, and genetical factors of the mollusc and the parasite. The susceptibility level of the mollusc has been attributed to the capacity of internal defense system (IDS)—hemocytes and soluble components of the hemolymph—to recognize and destroy the parasite, and this will be the center of interest of this paper. The schistosome-resistant Biomphalaria can be an alternative strategy for the control of schistosomiasis.
Collapse
|
28
|
Mitta G, Adema CM, Gourbal B, Loker ES, Theron A. Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:1-8. [PMID: 21945832 PMCID: PMC3645982 DOI: 10.1016/j.dci.2011.09.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/18/2011] [Accepted: 09/01/2011] [Indexed: 05/19/2023]
Abstract
Coevolutionary dynamics in host-parasite interactions potentially lead to an arms race that results in compatibility polymorphism. The mechanisms underlying compatibility have remained largely unknown in the interactions between the snail Biomphalaria glabrata and Schistosoma mansoni, one of the agents of human schistosomiasis. This review presents a combination of data obtained from field and laboratory studies arguing in favor of a matching phenotype model to explain compatibility polymorphism. Investigations focused on the molecular determinants of compatibility have revealed two repertoires of polymorphic and/or diversified molecules that have been shown to interact: the parasite antigens S. mansoni polymorphic mucins and the B. glabrata fibrinogen-related proteins immune receptors. We hypothesize their interactions define the compatible/incompatible status of a specific snail/schistosome combination. This line of thought suggests concrete approaches amenable to testing in field-oriented studies attempting to control schistosomiasis by disrupting schistosome-snail compatibility.
Collapse
Affiliation(s)
- G Mitta
- Université de Perpignan Via Domitia, Perpignan F-66860, France.
| | | | | | | | | |
Collapse
|
29
|
Mattos ACAD, Martins-Souza RL, Kusel JR, Coelho PMZ. Interaction between primary and secondary sporocysts of Schistosoma mansoni and the internal defence system of Biomphalaria resistant and susceptible to the parasite. Mem Inst Oswaldo Cruz 2012; 106:424-32. [PMID: 21739029 DOI: 10.1590/s0074-02762011000400007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/16/2011] [Indexed: 12/11/2022] Open
Abstract
The outcome of the interaction between Biomphalaria and Schistosoma mansoni depends on the response of the host internal defence system (IDS) and the escape mechanisms of the parasite. The aim of this study was to evaluate the responsiveness of the IDS (haemocytes and soluble haemolymph factors) of resistant and susceptible Biomphalaria tenagophila lineages and Biomphalaria glabrata lineages in the presence of in vitro-transformed primary sporocysts and secondary sporocysts obtained from infected B. glabrata. To do this, we assayed the cellular adhesion index (CAI), analysed viability/mortality, used fluorescent markers to evaluate the tegumental damage and transplanted secondary sporocysts. B. tenagophila Taim was more effective against primary and secondary sporocystes than the susceptible lineage and B. glabrata. Compared with secondary sporocysts exposed to B. tenagophila, primary sporocysts showed a higher CAI, a greater percentage of dead sporocysts and were labelled by lectin from Glycine max and Alexa-Fluor 488 fluorescent probes at a higher rate than the secondary sporocysts. However, the two B. tenagophila lineages showed no cercarial shedding after inoculation with secondary sporocysts. Our hypothesis that secondary sporocysts can escape the B. tenagophila IDS cannot be confirmed by the transplantation experiments. These data suggest that there are additional mechanisms involved in the lower susceptibilty of B. tenagophila to S. mansoni infection.
Collapse
|
30
|
Zhu JY, Ye Q, Zhao QP, Ming ZP, Grevelding CG, Jiang MS, Dong HF. Effects of protein extract from head-foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum. Parasitol Res 2011; 110:721-31. [PMID: 21800125 DOI: 10.1007/s00436-011-2548-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
Oncomelania hupensis is the intermediate host of Schistosoma japonicum. In the present study, we investigated the effects of protein extracts from head-foot or gland tissue of O. hupensis on mother sporocysts of S. japonicum cultured in vitro. In the presence of head-foot protein extract of snails from the native province Hunan, in-vitro-transformed mother sporocysts presented not only a longer survival time and stronger motility, but also a bigger size than parasites cultured with protein extracts of glands of the same snail or head-foot tissue of a non-native snail from the Hubei province. Using suppression subtractive hybridization, two subtractive libraries were constructed on the basis of RNA of sporocysts cultured with or without native snail head-foot protein extract. A number of 31 transcripts were found to be up-regulated. Sequence analyses revealed that they represented genes involved among others in metabolic process, electron transport chain, response to chemical stimulus, and oxidation-reduction processes. Opposite to that 20 down-regulated transcripts were among others related to pseudouridine synthesis, RNA processing, and ribosome biogenesis. The differential expression of three of these transcripts, encoding cytochrome c oxidase subunit 2 (Cox2), NADH-ubiquinone oxidoreductase (ND1), and dyskeratosis congenita 1 protein (DKC1), were confirmed by real-time PCR. The promoted development and the differential gene expression of cultured sporocysts under the influence of head-foot protein extract of native O. hupensis implied not only its ability to improve in vitro culture conditions for intramolluscan stages, it may also represent a priming result with respect to the identification and characterization of factors involved in the parasite-host interplay between S. japonicum and O. hupensis.
Collapse
Affiliation(s)
- Jun Yong Zhu
- Department of Parasitology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Mostafa OMS, El-Dafrawy SM. Susceptibility of Biomphalaria spp. to infection with Schistosoma mansoni in sympatric and allopatric combinations with observations on the genetic variability between snails. Vet Parasitol 2011; 180:226-31. [PMID: 21501930 DOI: 10.1016/j.vetpar.2011.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
This investigation was carried out to study the susceptibility of Saudi Biomphalaria arabica to Egyptian Schistosoma mansoni in comparison with the susceptibility of Egyptian Biomphalaria alexandrina to the same parasite. This was in order to know the possibility that the parasite might be able to spread into Saudi Arabia and to determine the genetic variability between Egyptian B. alexandrina and Saudi Biomphalaria arabica snails. Lab bred Egyptian B. alexandrina and Saudi B. arabica snails were exposed individually to 10 freshly hatched Egyptian S. mansoni miracidia/snail. The mortality rate, infection rate, prepatent period, duration of cercarial shedding and cercariae production per snail were recorded in both the sympatric couple (Egyptian B. alexandrina and Egyptian S. mansoni) and in the allopatric combination (Saudi B. arabica and Egyptian S. mansoni). The results revealed that, the survival rate of snails exposed to Egyptian S. mansoni miracidia at 34th day post-exposure (at first cercarial shedding) was higher in B. arabica than in B. alexandrina. After shedding, the mortality rate was higher in the B. arabica, compared to B. alexandrina. The infection rate was higher in B. arabica than B. alexandrina; the mean of prepatent period was shorter in the B. arabica than in the B. alexandrina. However, the duration of cercarial shedding was longer in the Egyptian snails and the cercarial production per snail was higher in B. alexandrina snails than in B. arabica. To study the genetic variability between B. alexandrina and B. arabica, RAPD-PCR on the genomic DNA of snails was done. RAPD-PCR revealed significant variation between the two snail species. In conclusion, the results suggest that B. arabica can play a role in the transmission of Egyptian S. mansoni in Saudi Arabia and therefore this parasite might be able to spread into the Kingdom. In addition, the RAPD-PCR results demonstrated genetic variability between the two species which may be related to the differences in susceptibility of both Saudi and Egyptian Biomphalaria snails to Egyptian S. mansoni infection.
Collapse
Affiliation(s)
- Osama M S Mostafa
- Biology Department, Faculty of Science, King Khaled University, Abha 61413, PO Box 9004, Saudi Arabia.
| | | |
Collapse
|
32
|
Bayne CJ. Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. Mol Biochem Parasitol 2009; 165:8-18. [PMID: 19393158 PMCID: PMC2765215 DOI: 10.1016/j.molbiopara.2009.01.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 01/13/2023]
Abstract
Schistosomiasis, caused by infections by human blood flukes (Trematoda), continues to disrupt the lives of over 200,000,000 people in over 70 countries, inflicting misery and precluding the individuals' otherwise reasonable expectations of productive lives. Infection requires contact with freshwater in which infected snails (the intermediate hosts of schistosomes) have released cercariae larvae. Habitats suitable for the host snails continue to expand as a consequence of water resource development. No vaccine is available, and resistance has emerged towards the single licensed schistosomicide drug. Since human infections would cease if parasite infections in snails were prevented, efforts are being made to discover requirements of intra-molluscan development of these parasites. Wherever blood flukes occur, naturally resistant conspecific snails are present. To understand the mechanisms used by parasites to ensure their survival in immunocompetent hosts, one must comprehend the interior defense mechanisms that are available to the host. For one intermediate host snail (Biomphalaria glabrata) and trematodes for which it serves as vector, molecular genetic and proteomic surveys for genes and proteins influencing the outcomes on infections are yielding lists of candidates. A comparative approach drawing on data from studies in divergent species provides a robust basis for hypothesis generation to drive decisions as to which candidates merit detailed further investigation. For example, reactive oxygen and nitrogen species are known mediators or effectors in battles between infectious agents and their hosts. An approach targeting genes involved in relevant pathways has been fruitful in the Schistosoma mansoni -- B. glabrata parasitism, leading to discovery of a functionally relevant gene set (encoding enzymes responsible for the leukocyte respiratory burst) that associates significantly with host resistance phenotype. This review summarizes advances in the understanding of strategies used by both this trematode parasite and its molluscan host to ensure their survival.
Collapse
|
33
|
Woodruff DS, Mulvey M. Neotropical schistosomiasis: African affinities of the host snail Biomphalaria glabrata (Gastropoda: Planorbidae). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1997.tb01509.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Humphries JE, Yoshino TP. Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:554-62. [PMID: 17981329 PMCID: PMC2271030 DOI: 10.1016/j.dci.2007.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 05/18/2023]
Abstract
Biomphalaria spp. serve as obligate intermediate hosts for the human blood fluke Schistosoma mansoni. Following S. mansoni penetration of Biomphalaria glabrata, hemocytes of resistant snails migrate towards the parasite, encasing the larva in a multicellular capsule resulting in its destruction via a cytotoxic reaction. Recent studies have revealed the importance of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in parasite killing [Hahn UK, Bender RC, Bayne CJ. Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species. J Parasitol 2001;87:292-9; Hahn UK, Bender RC, Bayne CJ. Involvement of nitric oxide in killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. J Parasitol 2001;87:778-85]. It is assumed that H(2)O(2) and NO production is tightly regulated although the specific molecules involved remain largely unknown. Consequently, the potential role of cell signaling pathways in B. glabrata hemocyte H(2)O(2) production was investigated by evaluating the effects of specific inhibitors of selected signaling proteins. Results suggest that both ERK and p38 MAPKs are involved in the regulation of B. glabrata H(2)O(2) release in response to stimulation by PMA and galactose-conjugated BSA. However, the involvement of the signaling proteins PKC, PI(3) kinase and PLA(2) differs between PMA- and BSA-gal-induced H(2)O(2) production.
Collapse
Affiliation(s)
- Judith E Humphries
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
35
|
Goodall CP, Bender RC, Brooks JK, Bayne CJ. Biomphalaria glabrata cytosolic copper/zinc superoxide dismutase (SOD1) gene: Association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni. Mol Biochem Parasitol 2006; 147:207-10. [PMID: 16564582 DOI: 10.1016/j.molbiopara.2006.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/23/2005] [Accepted: 02/13/2006] [Indexed: 11/25/2022]
Abstract
Variation in susceptibility of the snail Biomphalaria glabrata to infection by the parasite Schistosoma mansoni is, at least in part, genetically determined. Functional studies have demonstrated that hemocyte-mediated killing of the parasite involves hydrogen peroxide, the enzymatic product of superoxide dismutase (SOD). The present study identifies alleles of the gene coding for cytosolic copper/zinc SOD (SOD1). The resistance/susceptibility phenotypes and SOD1 genotypes were determined for 354 snails of the predominantly resistant 13-16-R1 strain of B. glabrata. Resistance to the parasite was found to be significantly associated with one allele of the SOD1 gene. Conversely, a separate SOD1 allele was significantly associated with susceptibility.
Collapse
Affiliation(s)
- Cheri P Goodall
- Oregon State University, Department of Zoology, Corvallis, OR 97331-2914, USA.
| | | | | | | |
Collapse
|
36
|
Walker SM, Hoey E, Fletcher H, Brennan G, Fairweather I, Trudgett A. Stage-specific differences in fecundity over the life-cycle of two characterized isolates of the liver fluke, Fasciola hepatica. Parasitology 2006; 133:209-16. [PMID: 16597358 DOI: 10.1017/s003118200600014x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/07/2022]
Abstract
The variability inherent in different isolates of Fasciola hepatica has been evident from reports in the literature but to date there has been no systematic examination of the relationship between these differences and the fecundity of the parasite. In this study we have attempted to remedy this situation by comparing the relative efficiencies with which 2 well-characterized isolates of the liver fluke (Oberon and Fairhurst) progress through both their definitive and intermediate hosts. We did not observe a reduction in fitness in the Oberon isolate which has been reported to be triclabendazole-resistant, compared to the triclabendazole-susceptible Fairhurst isolate, but considerable inter- and intra-isolate variability at different life-cycle stages was recorded. Thus the Oberon isolate gave 4-fold the number of cercariae when 100 snails were each challenged with a single miracidium and was more successful in establishing productive infections in rats. Fairhurst metacercariae excysted at a higher rate than those from the Oberon isolate and Fairhurst flukes produced 4-fold more eggs. The extent of the intra- and inter-isolate variability revealed in this work will provide a basis for the development of models of population dynamics aimed at predicting the response of the liver fluke to changing environmental conditions such as the use of anthelmintics or climatic change.
Collapse
Affiliation(s)
- S M Walker
- School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, N Ireland
| | | | | | | | | | | |
Collapse
|
37
|
Hertel J, Holweg A, Haberl B, Kalbe M, Haas W. Snail odour-clouds: spreading and contribution to the transmission success of Trichobilharzia ocellata (Trematoda, Digenea) miracidia. Oecologia 2005; 147:173-80. [PMID: 16187109 DOI: 10.1007/s00442-005-0239-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/15/2005] [Indexed: 11/29/2022]
Abstract
Chemical communication among freshwater organisms is an adaptation to improve their coexistence. Here,we focus on the chemical cues secreted by the freshwater gastropod Lymnaea stagnalis, which are known to stimulate behavioural responses of Trichobilharzia ocellata (Plathelminthes, Digenea, Trematoda) miracidia. Such responses are commonly claimed to influence transmission positively, but in response to chemical cues miracidia randomly change their swimming direction. This kind of response does not necessarily increase transmission, because miracidia may be trapped at the periphery of very large snail odour-clouds, which may prevent them from approaching the snail. On the other hand, the odour clouds may be too small to improve host-localisation. To shed light on these scenarios, the spreading of molecules released around L. stagnalis (active space) was visualised by recording host-finding responses of T. ocellata miracidia when they approached snails. Behavioural responses of miracidia indicated the spreading of compounds forming an attractive active space only around the host-snail L. stagnalis, but not around sympatric non-host-snail species. The active space increased approximately linearly with the time the snail rested at the same spot and within 5 min it reached a volume of more than 30 times that of the snail. We also demonstrated in a large-scale experiment, that the active space of L. stagnalis significantly increases the transmission success of T. ocellata miracidia. Additionally, the microhabitat selection of T. ocellata miracidia was studied, demonstrating that peripheral locations near the water surface were preferred, which are also preferred sites of L. stagnalis. Improved chemoperception and microhabitat selection may have been a consequence of coevolution with snails and benefited miracidia, which became efficient transmissive stages.
Collapse
Affiliation(s)
- Jan Hertel
- Institute for Zoology I, University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Humphries JE, Yoshino TP. Schistosoma mansoni excretory-secretory products stimulate a p38 signalling pathway in Biomphalaria glabrata embryonic cells. Int J Parasitol 2005; 36:37-46. [PMID: 16194541 DOI: 10.1016/j.ijpara.2005.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Following infection with Schistosoma mansoni larvae, haemocytes of resistant Biomphalaria glabrata snails execute a rapid defence during which they migrate towards and encapsulate the parasites. Such immediate and precise responses are thought to depend on signal transduction cascades though the signalling components involved remain largely unknown. It is proposed that mitogen-activated protein kinases may play a role in B. glabrata immune signalling, in particular p38 mitogen-activated protein kinases, which are known to be associated with stress and inflammatory signalling. Using degenerate PCR followed by Rapid Amplification of cDNA Ends a full-length p38 mitogen-activated protein kinase-like cDNA was cloned from both the B. glabrata embryonic (Bge) cell line (Bge-p38) and haemocytes (Bgh-p38). In addition, B. glabrata p38 mitogen-activated protein kinase activation was examined at the protein level in Western blot analyses using an antibody that specifically recognises activated/diphosphorylated p38 mitogen-activated protein kinase. Results showed that Bge cell p38 mitogen-activated protein kinase was activated/phosphorylated following 30 min incubation with anisomycin, an established p38 mitogen-activated protein kinase activator. Furthermore, p38 mitogen-activated protein kinase was also activated after only 5 min exposure to either the beta-glucan polymer laminarin or S. mansoni larval excretory-secretory products. In a comparative study, activated haemocyte p38 mitogen-activated protein kinase could also be detected using the anti-phosphorylated p38 antibody following cell treatment with anisomycin. However, in contrast with Bge cells, haemocyte p38 was not activated by either excretory-secretory products or laminarin treatments, suggesting fundamental differences in the role of p38 mitogen-activated protein kinase in signal transduction pathways between haemocytes and Bge cells.
Collapse
Affiliation(s)
- Judith E Humphries
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
39
|
Kalbe M, Haberl B, Hertel J, Haas W. Heredity of specific host-finding behaviour in Schistosoma mansoni miracidia. Parasitology 2004; 128:635-43. [PMID: 15206466 DOI: 10.1017/s0031182004005037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two strains of Schistosoma mansoni were used to investigate the hereditary basis of species-specific host recognition by analysing behavioural responses of miracidia to snail-conditioned water. An Egyptian strain of S. mansoni, capable of distinguishing its host snail Biomphalaria alexandrina from other snails was cycled repeatedly through Biomphalaria glabrata, the intermediate host of a Brazilian strain known to respond even to non-susceptible snails with high intensity. After 5 cycles in the non-natural host, miracidia of the Egyptian strain still retained their preference for the original host snail. In a second experiment, host-finding behaviour of hybrids between these two parasite strains was studied. In the F1 generation, hybrids of both parental combinations showed the same low degree of specificity as the pure-bred Brazilian strain. Approximately one quarter of F2 hybrids proved to be as discriminatory as the Egyptian strain, confirming dominant Mendelian inheritance of non-specificity in schistosome miracidial host-finding behaviour. Moreover, hybrids seem to have lost the ability to develop in B. alexandrina, possibly suggesting a link between host recognition and host compatibility. The heredity of this behavioural trait is of evolutionary and epidemiological significance, since a shift to low host-finding specificity might have been a prerequisite for S. mansoni to acquire new host snails after being introduced to South America by the slave trade.
Collapse
Affiliation(s)
- M Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Limnology, August-Thienemann-Strasse 2, D-24306 Plön, Germany.
| | | | | | | |
Collapse
|
40
|
Hassan AHM, Haberl B, Hertel J, Haas W. Miracidia of an Egyptian strain of Schistosoma mansoni differentiate between sympatric snail species. J Parasitol 2004; 89:1248-50. [PMID: 14740921 DOI: 10.1645/ge-85r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The host-finding behavior of miracidia of 2 strains of Schistosoma mansoni from Egypt and Brazil was studied by recording their responses to snail-conditioned water (SCW) from the Egyptian sympatric snails, Biomphalaria alexandrina, Physa acuta, Lymnaea cailliudi, and Balinus truncatus, as well as from Biomphalaria arabica and Biomphalaria glabrata. Miracidia of the Egyptian strain significantly preferred SCW from their compatible hosts B. alexandrina and B. arabica and showed no or a weak response to SCW from the other sympatric species, whereas miracidia of the Brazilian strain did not differentiate between SCW from different snail species.
Collapse
Affiliation(s)
- A H M Hassan
- Department of Zoology, Sohag Faculty of Science, South Valley University, Sohag, Egypt
| | | | | | | |
Collapse
|
41
|
Charbonnel N, Angers B, Rasatavonjizay R, Bremond P, Debain C, Jarne P. The influence of mating system, demography, parasites and colonization on the population structure of Biomphalaria pfeifferi in Madagascar. Mol Ecol 2002; 11:2213-28. [PMID: 12406234 DOI: 10.1046/j.1365-294x.2002.01586.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current evolutionary forces and historical processes interact to shape the distribution of neutral genetic variability within and among populations. Focusing on the genetics of recently introduced organisms offers a good opportunity to understand the relative importance of these factors. This study concerns variation at 8 polymorphic microsatellite loci in 30 populations of Biomphalaria pfeifferi. The sampling area spans most of the species' range in Madagascar where it was probably introduced recently. Extremely low variation was found within all populations studied, which may partly result from high selfing rates. However, this cannot account for the variance of variation across populations, which is better explained by habitat openness (that reflects environmental stochasticity), the prevalence of the parasitic trematode Schistosoma mansoni and historical demography (colonization and subsequent bottlenecks). Large global differentiation was also observed, suggesting that current gene flow among populations is limited to small distances, within watersheds and to few individuals. Our data set also allowed us to test several hypotheses regarding colonization, based on bottleneck and admixture tests. The observed pattern requires at least two independent introductions from slightly differentiated genetic sources in the western part of Madagascar. Another introduction, from a very different genetic origin, should also be postulated to explain the genetic composition of eastern populations. That this introduction occurred recently suggests that the colonization of Madagascar by B. pfeifferi is an ongoing process.
Collapse
Affiliation(s)
- N Charbonnel
- CEFE-CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
42
|
DeJong RJ, Morgan JA, Paraense WL, Pointier JP, Amarista M, Ayeh-Kumi PF, Babiker A, Barbosa CS, Brémond P, Pedro Canese A, de Souza CP, Dominguez C, File S, Gutierrez A, Incani RN, Kawano T, Kazibwe F, Kpikpi J, Lwambo NJ, Mimpfoundi R, Njiokou F, Noël Poda J, Sene M, Velásquez LE, Yong M, Adema CM, Hofkin BV, Mkoji GM, Loker ES. Evolutionary relationships and biogeography of Biomphalaria (Gastropoda: Planorbidae) with implications regarding its role as host of the human bloodfluke, Schistosoma mansoni. Mol Biol Evol 2001; 18:2225-39. [PMID: 11719572 DOI: 10.1093/oxfordjournals.molbev.a003769] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The wide geographic distribution of Schistosoma mansoni, a digenetic trematode and parasite of humans, is determined by the occurrence of its intermediate hosts, freshwater snails of the genus Biomphalaria (Preston 1910). We present phylogenetic analyses of 23 species of Biomphalaria, 16 Neotropical and seven African, including the most important schistosome hosts, using partial mitochondrial ribosomal 16S and complete nuclear ribosomal ITS1 and ITS2 nucleotide sequences. A dramatically better resolution was obtained by combining the data sets as opposed to analyzing each separately, indicating that there is additive congruent signal in each data set. Neotropical species are basal, and all African species are derived, suggesting an American origin for the genus. We confirm that a proto-Biomphalaria glabrata gave rise to all African species through a trans-Atlantic colonization of Africa. In addition, genetic distances among African species are smaller compared with those among Neotropical species, indicating a more recent origin. There are two species-rich clades, one African with B. glabrata as its base, and the other Neotropical. Within the African clade, a wide-ranging tropical savannah species, B. pfeifferi, and a Nilotic species complex, have both colonized Rift Valley lakes and produced endemic lacustrine forms. Within the Neotropical clade, two newly acquired natural hosts for S. mansoni (B. straminea and B. tenagophila) are not the closest relatives of each other, suggesting two separate acquisition events. Basal to these two species-rich clades are several Neotropical lineages with large genetic distances between them, indicating multiple lineages within the genus. Interesting patterns occur regarding schistosome susceptibility: (1) the most susceptible hosts belong to a single clade, comprising B. glabrata and the African species, (2) several susceptible Neotropical species are sister groups to apparently refractory species, and (3) some basal lineages are susceptible. These patterns suggest the existence of both inherent susceptibility and resistance, but also underscore the ability of S. mansoni to adapt to and acquire previously unsusceptible species as hosts. Biomphalaria schrammi appears to be distantly related to other Biomphalaria as well as to Helisoma, and may represent a separate or intermediate lineage.
Collapse
Affiliation(s)
- R J DeJong
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hahn UK, Bender RC, Bayne CJ. Involvement of Nitric Oxide in Killing ofSchistosoma MansoniSporocysts by Hemocytes From ResistantBiomphalaria Glabrata. J Parasitol 2001. [DOI: 10.1645/0022-3395(2001)087%5b0778:ionoik%5d2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Hahn UK, Bender RC, Bayne CJ. Involvement of nitric oxide in killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. J Parasitol 2001; 87:778-85. [PMID: 11534641 DOI: 10.1645/0022-3395(2001)087[0778:ionoik]2.0.co;2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In strains of the snail Biomphalaria glabrata (Gastropoda) that are resistant to the parasite Schistosoma mansoni (Trematoda), hemocytes in the hemolymph are responsible for elimination of S. mansoni sporocysts. The defensive role of reactive nitrogen species was investigated in in vitro interactions between hemocytes derived from the resistant 13-16-R1 strain of B. glabrata and the parasite. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methylester (L-NAME) and the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide reduced cell-mediated killing of S. mansoni sporocysts. To determine if peroxynitrite (ONOO-) is involved in killing, assays were run in the presence of the ONOO- scavengers uric acid and deferoxamine. These did not influence the rate of parasite killing, indicating that NO is directly responsible for mediating cytotoxicity, but ONOO- is not. The combination of the NOS inhibitor L-NAME and catalase, an enzyme that detoxifies hydrogen peroxide (H2O2), reduced average sporocyst mortality to a greater extent than L-NAME alone. Killing of the sporocysts was, however, not totally inhibited. It is suggested that NO and H2O2 are both involved in hemocyte-mediated toxicity of 13-16-R1 B. glabrata against S. mansoni sporocysts.
Collapse
Affiliation(s)
- U K Hahn
- Department of Zoology, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|
45
|
Kalbe M, Haberl B, Haas W. Snail host finding by Fasciola hepatica and Trichobilharzia ocellata: compound analysis of "miracidia-attracting glycoproteins". Exp Parasitol 2000; 96:231-42. [PMID: 11162376 DOI: 10.1006/expr.2000.4579] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycoconjugates from snail-conditioned water of Lymnaea truncatula and L. stagnalis which elicit typical host finding behavior in miracidia of Fasciola hepatica and Trichobilharzia ocellata were separated by anion-exchange chromatography and a two-step size-exclusion chromatography. We obtained fractions attractive for the parasites with MW of about 10(6) Da in both snail species. These fractions still contained species-specific information since miracidia responded only to molecules from their respective host snail. Analysis of the amino acid composition from the protein backbone revealed a similar composition in the effective fractions of both snails. Amounts of serine and threonine were higher than 30 mol %, which is typical for mucin-type glycoproteins. The carbohydrate moieties consisted mainly of galactose and fucose, but nine different other monosaccharides also were identified in smaller amounts. The heterogeneity of the molecules was also confirmed by the binding of six different lectins. Because of these characteristics, the effective molecules were termed "miracidia-attracting glycoproteins" (MAGs). MAGs may play an important role for parasite transmission, as they may increase the chance of an encounter between parasite and host and enable the miracidia to discriminate between their specific intermediate host and other unsuitable snail species.
Collapse
Affiliation(s)
- M Kalbe
- Institute for Zoology I, University of Erlangen, Staudtstrasse 5, D-91058 Erlangen, Germany.
| | | | | |
Collapse
|
46
|
Knight M, Ongele E, Lewis FA. Molecular studies of Biomphalaria glabrata, an intermediate host of Schistosoma mansoni. Int J Parasitol 2000; 30:535-41. [PMID: 10731574 DOI: 10.1016/s0020-7519(99)00182-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The freshwater gastropod Biomphalaria glabrata is one of the most important invertebrate hosts of the helminth parasite Schistosoma mansoni. Investigators are using different strategies to determine the molecular basis of this snail-parasite relationship. Of particular interest are the identification of parasite resistance genes in the snail, and the application of molecular probes to better understand the epidemiology of schistosomiasis. This review will focus on recent advances that have been made on genome analysis of B. glabrata. Much of this work has centred on the use of random amplification of polymorphic DNA-PCR-based technology, with restriction fragment length polymorphism analysis and the generation of expressed sequence tags from the snail. A brief discussion of how parasite products may complicate this analysis is also given, along with an indication of the scope of the problems that lie ahead.
Collapse
Affiliation(s)
- M Knight
- Biomedical Research Institute, 12111 Parklawn Drive, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
47
|
Galvan AG, Paugam M, Sullivan JT. Rescue of sporocysts of Schistosoma mansoni in nonsusceptible Biomphalaria by head-foot transplantation into susceptible snails. J Parasitol 2000; 86:308-11. [PMID: 10780550 DOI: 10.1645/0022-3395(2000)086[0308:rososm]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To measure the longevity of sporocysts of Schistosoma mansoni in nonsusceptible snails (13-16-R1 and Salvador strains of Biomphalaria glabrata, and Biomphalaria obstructa), the head-foot (HF) of miracidia-exposed snails was transplanted into the hemocoel of a susceptible NIH albino recipient at 1-36 days postexposure (DPE). Recipient snails which were not exposed to miracidia then were monitored for infection transferred by the implant, and infection prevalences in recipients of HF transplants from nonsusceptible donors were compared to those in snails implanted with an HF from NIH albino donors. Transplants from NIH albino snails between 1 to 15 DPE infected 98% of recipients. Similarly, at 1 DPE, 69-85% of transplants from nonsusceptible snails contained viable sporocysts, as shown by resulting patent infections in the recipients. Recipient infection prevalence, and presumably numbers of transplants containing viable sporocysts, declined as a function of DPE, and by 5-9 DPE this decrease was significant for all 3 types of nonsusceptible donors. However, viable sporocysts still occurred in B. obstructa and 13-16-R1 B. glabrata as late as 19 and 20 DPE, respectively, and in Salvador B. glabrata as late as 33 DPE. Thus, sporocysts persist in nonsusceptible snails considerably longer than suggested by results of previous histological studies.
Collapse
Affiliation(s)
- A G Galvan
- Biology Department, University of the Incarnate Word, San Antonio, Texas 78209, USA
| | | | | |
Collapse
|
48
|
Webster JP, Woolhouse MEJ. Cost of resistance: relationship between reduced fertility and increased resistance in a snail—schistosome host—parasite system. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0650] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J. P. Webster
- WellcomeTrust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road,Oxford OX1 3PS, UK
| | - M. E. J. Woolhouse
- WellcomeTrust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road,Oxford OX1 3PS, UK
| |
Collapse
|
49
|
Morand S, Manning SD, Woolhouse ME. Parasite-host coevolution and geographic patterns of parasite infectivity and host susceptibility. Proc Biol Sci 1996; 263:119-28. [PMID: 8587893 DOI: 10.1098/rspb.1996.0019] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ebert (1994) has proposed the rule that parasites are, with few exceptions, more infective to sympatric hosts than to allopatric hosts. We test this rule using field data for schistosome infections of planorbid snails and find that, although sympatric parasite-host combinations do tend to be more compatible, there are exceptions where particular allopatric parasite-host populations are significantly more compatible. We develop a mathematical model of the dynamics of the parasite-host interaction where parasite infectivity and host susceptibility are defined by the matching of genotypes in a diploid system, The model predicts dynamic polymorphisms where parasite allele frequencies track host allele frequencies but with a lag. Because of this lag, it is possible for allopatric combinations to be more compatible than sympatric combinations. Any 'rule' that precludes this possibility is unlikely to prove robust.
Collapse
Affiliation(s)
- S Morand
- Laboratoire de Biologie Animale, Universite de Perpignan, France
| | | | | |
Collapse
|
50
|
|