Rivera-Walsh I, Cvijic ME, Xiao G, Sun SC. The NF-kappa B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death.
J Biol Chem 2000;
275:25222-30. [PMID:
10837465 DOI:
10.1074/jbc.m000444200]
[Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stimulation of T cells by antigens or mitogens triggers multiple signaling pathways leading to activation of genes encoding interleukin-2 and other growth-regulatory cytokines. The same stimuli also activate the gene encoding an apoptosis-inducing molecule, Fas ligand (FasL), which contributes to activation-induced cell death. It has been proposed that the signaling pathways involved in cytokine gene induction also contribute to activation-induced FasL expression; however, genetic evidence for this proposal is lacking. In the present study, the role of the NF-kappaB signaling pathway in FasL gene expression was examined using a mutant T cell line deficient in an essential NF-kappaB signaling component, IkappaB kinase gamma. These mutant cells have a blockade in signal-induced activation of NF-kappaB but remained normal in the activation of NF-AT and AP-1 transcription factors. Interestingly, the NF-kappaB signaling defect has no effect on mitogen-stimulated FasL gene expression, although it completely blocks the interleukin-2 gene induction. We further demonstrate that NF-kappaB activation is required for protecting T cells from apoptosis induction by mitogens and an agonistic anti-Fas antibody. These genetic results suggest that the NF-kappaB signaling pathway is not required for activation-induced FasL expression but rather mediates cell growth and protection from activation-induced cell death.
Collapse