1
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Somenath Datta
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | | | | | | | | | - Hengtao Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul B. Rosenberg
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alec B. Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Guojie Li
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Sarah Nystrom
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas C. Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hans-Ewald Hohmeier
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Opeyemi A. Olabisi
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
2
|
Pant J, Giovinazzo JA, Tuka LS, Peña D, Raper J, Thomson R. Apolipoproteins L1-6 share key cation channel-regulating residues but have different membrane insertion and ion conductance properties. J Biol Chem 2021; 297:100951. [PMID: 34252458 PMCID: PMC8358165 DOI: 10.1016/j.jbc.2021.100951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023] Open
Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| | - Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilit S Tuka
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Darwin Peña
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| |
Collapse
|
3
|
Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R. Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 2021; 297:101009. [PMID: 34331942 PMCID: PMC8446801 DOI: 10.1016/j.jbc.2021.101009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York; Vanderbilt University, Nashville, Tennessee, USA
| | - Penny Lee
- Department of Biological sciences, Hunter College, City University of New York, USA; John Jay College, City University of New York, USA
| | - Alisha Racho-Jansen
- Department of Biological sciences, Hunter College, City University of New York, USA
| | - Joe Giovinazzo
- Department of Biological sciences, Hunter College, City University of New York, USA; University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nada Terra
- Department of Biological sciences, Hunter College, City University of New York, USA; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jayne Raper
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York.
| | - Russell Thomson
- Department of Biological sciences, Hunter College, City University of New York, USA.
| |
Collapse
|
4
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Schaub C, Verdi J, Lee P, Terra N, Limon G, Raper J, Thomson R. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J Biol Chem 2020; 295:13138-13149. [PMID: 32727852 DOI: 10.1074/jbc.ra120.014201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biochemistry, The Graduate Center, CUNY, New York, USA
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biology, The Graduate Center, CUNY, New York, USA; German Cancer Research Center, Heidelberg, Germany
| | - Penny Lee
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Nada Terra
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Gina Limon
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; NYU School of Medicine, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, CUNY, New York, USA.
| |
Collapse
|
6
|
Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. eLife 2020; 9:51185. [PMID: 32427098 PMCID: PMC7292663 DOI: 10.7554/elife.51185] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Russell P Thomson
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Nailya Khalizova
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Patrick J Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | | | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | - Jayne Raper
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
7
|
Abstract
Apolipoprotein L1 (APOL1) protein is the human serum factor that protect human beings against Trypanosoma brucei brucei, the cause of trypanosomiasis. Subspecies of T b brucei that cause human sleeping sickness-T b gambiense and T b rhodesiense evolved molecular mechanisms that enabled them to evade killing by APOL1. Sequence changes (termed G1 and G2) in the APOL1 gene that restored its ability to kill T b rhodesiense also increase the risk of developing glomerular diseases and accelerate progression to end-stage kidney disease. To lyse trypanosome parasites, APOL1 forms pores in the trypanosome endolysosomal and mitochondrial membranes, resulting in rapid membrane depolarization. However, the molecular mechanism underlying APOL1 nephropathy is unknown. Recent experimental evidence has shown that aberrant efflux of intracellular potassium is an early event in APOL1-induced death of human embryonic kidney cells. Here, we discuss the possibility that abnormal efflux of cellular potassium or other cations may be relevant to the pathogenesis of APOL1 nephropathy.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - John F Heneghan
- Harvard Medical School, Boston, MA; Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Surgical Immunotherapy at Roger Williams Medical Center, Providence, RI
| |
Collapse
|
8
|
APOL1: The Balance Imposed by Infection, Selection, and Kidney Disease. Trends Mol Med 2018; 24:682-695. [PMID: 29886044 DOI: 10.1016/j.molmed.2018.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) affects millions of people and constitutes a major health and financial burden worldwide. People of African descent are at an increased risk of developing kidney disease, which is mostly explained by two variants in the Apolipoprotein L1 (APOL1) gene that are found only in people of west African origin. It is hypothesized that these variants were genetically selected due to the protection they afford against African sleeping sickness, caused by the parasite Trypanosoma brucei. Targeting mutant APOL1 could have substantial therapeutic potential for treating kidney disease. In this review, we will describe the intriguing interplay between microbiology, genetics, and kidney disease as revealed in APOL1-associated kidney disease, discuss APOL1-induced cytotoxicity and its therapeutic implications.
Collapse
|
9
|
The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat Microbiol 2018; 3:295-301. [PMID: 29358741 DOI: 10.1038/s41564-017-0085-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Only two trypanosome subspecies are able to cause human African trypanosomiasis. To establish an infection in human blood, they must overcome the innate immune system by resisting the toxic effects of trypanolytic factor 1 and trypanolytic factor 2 (refs. 1,2). These lipoprotein complexes contain an active, pore-forming component, apolipoprotein L1 (ApoL1), that causes trypanosome cell death 3 . One of the two human-infective subspecies, Trypanosoma brucei rhodesiense, differs from non-infective trypanosomes solely by the presence of the serum resistance-associated protein, which binds directly to ApoL1 and blocks its pore-forming capacity3-5. Since this interaction is the single critical event that renders T. b. rhodesiense human- infective, detailed structural information that allows identification of binding determinants is crucial to understand immune escape by the parasite. Here, we present the structure of serum resistance-associated protein and reveal the adaptations that occurred as it diverged from other trypanosome surface molecules to neutralize ApoL1. We also present our mapping of residues important for ApoL1 binding, giving molecular insight into this interaction at the heart of human sleeping sickness.
Collapse
|
10
|
Greene AS, Hajduk SL. Trypanosome Lytic Factor-1 Initiates Oxidation-stimulated Osmotic Lysis of Trypanosoma brucei brucei. J Biol Chem 2016; 291:3063-75. [PMID: 26645690 PMCID: PMC4742767 DOI: 10.1074/jbc.m115.680371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/12/2015] [Indexed: 01/18/2023] Open
Abstract
Human innate immunity against the veterinary pathogen Trypanosoma brucei brucei is conferred by trypanosome lytic factors (TLFs), against which human-infective T. brucei gambiense and T. brucei rhodesiense have evolved resistance. TLF-1 is a subclass of high density lipoprotein particles defined by two primate-specific apolipoproteins: the ion channel-forming toxin ApoL1 (apolipoprotein L1) and the hemoglobin (Hb) scavenger Hpr (haptoglobin-related protein). The role of oxidative stress in the TLF-1 lytic mechanism has been controversial. Here we show that oxidative processes are involved in TLF-1 killing of T. brucei brucei. The lipophilic antioxidant N,N'-diphenyl-p-phenylenediamine protected TLF-1-treated T. brucei brucei from lysis. Conversely, lysis of TLF-1-treated T. brucei brucei was increased by the addition of peroxides or thiol-conjugating agents. Previously, the Hpr-Hb complex was postulated to be a source of free radicals during TLF-1 lysis. However, we found that the iron-containing heme of the Hpr-Hb complex was not involved in TLF-1 lysis. Furthermore, neither high concentrations of transferrin nor knock-out of cytosolic lipid peroxidases prevented TLF-1 lysis. Instead, purified ApoL1 was sufficient to induce lysis, and ApoL1 lysis was inhibited by the antioxidant DPPD. Swelling of TLF-1-treated T. brucei brucei was reminiscent of swelling under hypotonic stress. Moreover, TLF-1-treated T. brucei brucei became rapidly susceptible to hypotonic lysis. T. brucei brucei cells exposed to peroxides or thiol-binding agents were also sensitized to hypotonic lysis in the absence of TLF-1. We postulate that ApoL1 initiates osmotic stress at the plasma membrane, which sensitizes T. brucei brucei to oxidation-stimulated osmotic lysis.
Collapse
Affiliation(s)
- Amy Styer Greene
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Stephen L Hajduk
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
11
|
Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis. Proc Natl Acad Sci U S A 2015; 112:2894-9. [PMID: 25730870 DOI: 10.1073/pnas.1421953112] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein L-1 (APOL1), the trypanolytic factor of human serum, can lyse several African trypanosome species including Trypanosoma brucei brucei, but not the human-infective pathogens T. brucei rhodesiense and T. brucei gambiense, which are resistant to lysis by human serum. Lysis follows the uptake of APOL1 into acidic endosomes and is apparently caused by colloid-osmotic swelling due to an increased ion permeability of the plasma membrane. Here we demonstrate that nanogram quantities of full-length recombinant APOL1 induce ideally cation-selective macroscopic conductances in planar lipid bilayers. The conductances were highly sensitive to pH: their induction required acidic pH (pH 5.3), but their magnitude could be increased 3,000-fold upon alkalinization of the milieu (pK(a) = 7.1). We show that this phenomenon can be attributed to the association of APOL1 with the bilayer at acidic pH, followed by the opening of APOL1-induced cation-selective channels upon pH neutralization. Furthermore, the conductance increase at neutral pH (but not membrane association at acidic pH) was prevented by the interaction of APOL1 with the serum resistance-associated protein, which is produced by T. brucei rhodesiense and prevents trypanosome lysis by APOL1. These data are consistent with a model of lysis that involves endocytic recycling of APOL1 and the formation of cation-selective channels, at neutral pH, in the parasite plasma membrane.
Collapse
|
12
|
Stephens NA, Kieft R, Macleod A, Hajduk SL. Trypanosome resistance to human innate immunity: targeting Achilles' heel. Trends Parasitol 2012; 28:539-45. [PMID: 23059119 DOI: 10.1016/j.pt.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
Trypanosome lytic factors (TLFs) are powerful, naturally occurring toxins in humans that provide sterile protection against infection by several African trypanosomes. These trypanocidal complexes predominantly enter the parasite by binding to the trypanosome haptoglobin/hemoglobin receptor (HpHbR), trafficking to the lysosome, causing membrane damage and, ultimately, cell lysis. Despite TLF-mediated immunity, the parasites that cause human African Trypanosomiasis (HAT), Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have developed independent mechanisms of resistance to TLF killing. In this review we describe the parasite defenses that allow trypanosome infections of humans and discuss how targeting these apparent strengths of the parasite may reveal their Achilles' heel, leading to new approaches in the treatment of HAT.
Collapse
Affiliation(s)
- Natalie A Stephens
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
13
|
Bullard W, Kieft R, Capewell P, Veitch NJ, Macleod A, Hajduk SL. Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum and trypanosome lytic factors. Virulence 2012; 3:72-6. [PMID: 22286709 PMCID: PMC3337153 DOI: 10.4161/viru.3.1.18295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The haptoglobin-hemoglobin receptor (HpHbR) of African trypanosomes plays a critical role in human innate immunity against these parasites. Localized to the flagellar pocket of the veterinary pathogen Trypanosoma brucei brucei this receptor binds Trypanosome Lytic Factor-1 (TLF-1), a subclass of human high-density lipoprotein (HDL) facilitating endocytosis, lysosomal trafficking and subsequent killing. Recently, we found that group 1 Trypanosoma brucei gambiense does not express a functional HpHbR. We now show that loss of the TbbHpHbR reduces the susceptibility of T. b. brucei to human serum and TLF-1 by 100- and 10,000-fold, respectively. The relatively high concentrations of human serum and TLF-1 needed to kill trypanosomes lacking the HpHbR indicates that high affinity TbbHpHbR binding enhances the cytotoxicity; however, in the absence of TbbHpHbR, other receptors or fluid phase endocytosis are sufficient to provide some level of susceptibility. Human serum contains a second innate immune factor, TLF-2, that has been suggested to kill trypanosomes independently of the TbbHpHbR. We found that T. b. brucei killing by TLF-2 was reduced in TbbHpHbR-deficient cells but to a lesser extent than TLF-1. This suggests that both TLF-1 and TLF-2 can be taken up via the TbbHpHbR but that alternative pathways exist for the uptake of these toxins. Together the findings reported here extend our previously published studies and suggest that group 1 T. b. gambiense has evolved multiple mechanisms to avoid killing by trypanolytic human serum factors.
Collapse
Affiliation(s)
- Whitney Bullard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vanhollebeke B, Pays E. The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 2010; 76:806-14. [PMID: 20398209 DOI: 10.1111/j.1365-2958.2010.07156.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans have developed a particular innate immunity system against African trypanosomes, and only two Trypanosoma brucei clones (T. b. gambiense, T. b. rhodesiense) can resist this defence and cause sleeping sickness. The main players of this immunity are the primate-specific apolipoprotein L-I (apoL1) and haptoglobin-related protein (Hpr). These proteins are both associated with two serum complexes, a minor subfraction of HDLs and an IgM/apolipoprotein A-I (apoA1) complex, respectively, termed trypanosome lytic factor (TLF) 1 and TLF2. Although the two complexes appear to lyse trypanosomes by the same mechanism, they enter the parasite through various modes of uptake. In case of TLF1 one uptake process was characterized. When released in the circulation, haemoglobin (Hb) binds to Hpr, hence to TLF1. In turn the TLF1-Hpr-Hb complex binds to the trypanosome haptoglobin (Hp)-Hb receptor, whose original function is to ensure haem uptake for optimal growth of the parasite. This binding triggers efficient uptake of TLF1 and subsequent trypanosome lysis. While Hpr is involved as TLF ligand, the lytic activity is due to apoL1, a Bcl-2-like pore-forming protein. We discuss the in vivo relevance of this uptake pathway in the context of other potentially redundant delivery routes.
Collapse
Affiliation(s)
- Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | |
Collapse
|
15
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Widener J, Nielsen MJ, Shiflett A, Moestrup SK, Hajduk S. Hemoglobin is a co-factor of human trypanosome lytic factor. PLoS Pathog 2007; 3:1250-61. [PMID: 17845074 PMCID: PMC1971115 DOI: 10.1371/journal.ppat.0030129] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022] Open
Abstract
Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have been proposed to kill T. b. brucei both singularly or when co-assembled into the same HDL. To better understand the mechanism of T. b. brucei killing by TLF, the protein composition of TLF was investigated using a gentle immunoaffinity purification technique that avoids the loss of weakly associated proteins. HDL particles recovered by immunoaffinity absorption, with either anti-Hpr or anti-ApoL-1, were identical in protein composition and specific activity for T. b. brucei killing. Here, we show that TLF-bound Hpr strongly binds Hb and that addition of Hb stimulates TLF killing of T. b. brucei by increasing the affinity of TLF for its receptor, and by inducing Fenton chemistry within the trypanosome lysosome. These findings suggest that TLF in uninfected humans may be inactive against T. b. brucei prior to initiation of infection. We propose that infection of humans by T. b. brucei causes hemolysis that triggers the activation of TLF by the formation of Hpr-Hb complexes, leading to enhanced binding, trypanolytic activity, and clearance of parasites.
Collapse
Affiliation(s)
- Justin Widener
- Program in Pathobiology, Brown University, Providence, Rhode Island, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | | | - April Shiflett
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | | | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Faulkner SD, Oli MW, Kieft R, Cotlin L, Widener J, Shiflett A, Cipriano MJ, Pacocha SE, Birkeland SR, Hajduk SL, McArthur AG. In vitro generation of human high-density-lipoprotein-resistant Trypanosoma brucei brucei. EUKARYOTIC CELL 2007; 5:1276-86. [PMID: 16896212 PMCID: PMC1539141 DOI: 10.1128/ec.00116-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.
Collapse
Affiliation(s)
- Sara D Faulkner
- Josephine Bay Paul Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Pérez-Morga D. The trypanolytic factor of human serum. Nat Rev Microbiol 2006; 4:477-86. [PMID: 16710327 DOI: 10.1038/nrmicro1428] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
African trypanosomes (the prototype of which is Trypanosoma brucei brucei) are protozoan parasites that infect a wide range of mammals. Human blood, unlike the blood of other mammals, has efficient trypanolytic activity, and this needs to be counteracted by these parasites. Resistance to this activity has arisen in two subspecies of Trypanosoma brucei - Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense - allowing these parasites to infect humans, and this results in sleeping sickness in East Africa and West Africa, respectively. Study of the mechanism by which T. b. rhodesiense escapes lysis by human serum led to the identification of an ionic-pore-forming apolipoprotein - known as apolipoprotein L1 - that is associated with high-density-lipoprotein particles in human blood. In this Opinion article, we argue that apolipoprotein L1 is the factor that is responsible for the trypanolytic activity of human serum.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | | | |
Collapse
|
19
|
Molina-Portela MDP, Lugli EB, Recio-Pinto E, Raper J. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol Biochem Parasitol 2005; 144:218-26. [PMID: 16202458 DOI: 10.1016/j.molbiopara.2005.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes. We show that the replacement of external Na+ (23 Da) with the larger tetramethylammonium+, choline+ and tetraethylammonium+ ions (74 Da, 104 Da and 130 Da) ameliorates the osmotically driven swelling and lysis of trypanosomes by TLF1. Confirmation of cation pore-formation was obtained using small unilamellar vesicles incubated with TLF1; these showed the predicted change in membrane potential expected from an influx of sodium ions. Using planar lipid bilayer model membranes made from trypanosome lipids, which allow the detection of single channels, we found that TLF1 forms discrete ion-conducting channels (17 pS) that are selective for potassium ions over chloride ions. We propose that the initial influx of extracellular Na+ down its concentration gradient promotes the passive entry of Cl- through preexisting Cl- channels. The net influx of both Na+ and Cl- create an osmotic imbalance that leads to passive water diffusion. This loss of osmoregulation results in cytoplasmic vacuolization, cell swelling and ultimately trypanosome lysis.
Collapse
|
20
|
Pérez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L, Homblé F, Vanhamme L, Tebabi P, Pays A, Poelvoorde P, Jacquet A, Brasseur R, Pays E. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 2005; 309:469-72. [PMID: 16020735 DOI: 10.1126/science.1114566] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoprotein L-I is the trypanolytic factor of human serum. Here we show that this protein contains a membrane pore-forming domain functionally similar to that of bacterial colicins, flanked by a membrane-addressing domain. In lipid bilayer membranes, apolipoprotein L-I formed anion channels. In Trypanosoma brucei, apolipoprotein L-I was targeted to the lysosomal membrane and triggered depolarization of this membrane, continuous influx of chloride, and subsequent osmotic swelling of the lysosome until the trypanosome lysed.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology
- Amino Acid Sequence
- Animals
- Anions/metabolism
- Apolipoprotein L1
- Apolipoproteins/chemistry
- Apolipoproteins/genetics
- Apolipoproteins/metabolism
- Apolipoproteins/pharmacology
- Cells, Immobilized
- Chlorides/metabolism
- Colicins/chemistry
- Colicins/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Humans
- Intracellular Membranes/drug effects
- Intracellular Membranes/metabolism
- Intracellular Membranes/ultrastructure
- Ion Channels/metabolism
- Lipid Bilayers/chemistry
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/pharmacology
- Lysosomes/drug effects
- Lysosomes/metabolism
- Lysosomes/ultrastructure
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Permeability
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Proteins/metabolism
- Trypanosoma brucei brucei/drug effects
- Trypanosoma brucei brucei/metabolism
- Trypanosoma brucei brucei/ultrastructure
Collapse
Affiliation(s)
- David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vanhamme L, Pays E. The trypanosome lytic factor of human serum and the molecular basis of sleeping sickness. Int J Parasitol 2004; 34:887-98. [PMID: 15217727 DOI: 10.1016/j.ijpara.2004.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/20/2004] [Accepted: 04/20/2004] [Indexed: 02/08/2023]
Abstract
Trypanosoma brucei brucei infects a wide range of mammals but is unable to infect humans because this subspecies is lysed by normal human serum (NHS). The trypanosome lytic factor is associated with High Density Lipoproteins (HDLs). Several HDL-associated components have been proposed as candidate lytic factors, and contradictory hypotheses concerning the mechanism of lysis have been suggested. Elucidation of the process by which Trypanosoma brucei rhodesiense resists lysis and causes human sleeping sickness has indicated that the HDL-bound apolipoprotein L-I (apoL-I) could be the long-sought after lytic component of NHS. This research also allowed the identification of a specific diagnostic DNA probe for T. b. rhodesiense, and may lead to the development of novel anti-trypanosome strategies for use in the field.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Laboratory of Molecular Parasitology, IBMM, University of Brussels, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium
| | | |
Collapse
|
22
|
Abstract
The review discusses the current field status of human and bovine trypanosomiases, and focuses on the molecular basis of innate and acquired control of African trypanosomes in people, cattle, and Cape buffalo.
Collapse
Affiliation(s)
- S J Black
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
23
|
Lorenz P, Betschart B, Owen JS. Trypanosoma brucei brucei and high-density lipoproteins: Old and new thoughts on the identity and mechanism of the trypanocidal factor in human serum. ACTA ACUST UNITED AC 1995; 11:348-52. [PMID: 15275320 DOI: 10.1016/0169-4758(95)80191-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nature has provided humans with a surprising means of protection against the African trypanosome Trypanosoma brucei brucei There is consensus, in that this singular trypanocidal factor is serum high-density lipoproteins (HDL). which the trypanosomes engulf through a physiological, receptor-mediated pathway for delivery to acidic intracellular vesicles. There is also controversy, however, in that the active particles and their essential cytotoxic elements are disputed, in part reflecting the ill-defined mechanism by which the parasites are finally killed. Here Patrick Lorenz, Bruno Betschart and Jim Owen discuss the possibilities for resolving these discrepancies and speculate on the prospects of exploiting this unexpected property of human HDL for protecting livestock.
Collapse
Affiliation(s)
- P Lorenz
- Zentrum für Molekulare Biologie, Universität Heidelberg, Postfach 10 62 49, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Rifkin MR, De Greef C, Jiwa A, Landsberger FR, Shapiro SZ. Human serum-sensitive Trypanosoma brucei rhodesiense: a comparison with serologically identical human serum-resistant clones. Mol Biochem Parasitol 1994; 66:211-20. [PMID: 7808471 DOI: 10.1016/0166-6851(94)90148-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trypanosoma brucei rhodesiense clones, which are susceptible to lysis by normal human serum, were isolated from 3 different human serum-resistant clones originally derived from strain ETat 1.10. Serologically, these pairs of serum-sensitive and serum-resistant clones displayed the same variant surface glycoprotein (VSG) on their surface. Acquisition of human serum sensitivity correlated with susceptibility to lysis by human high density lipoprotein, a trypanocidal factor in normal human serum. Analysis of these paired populations by two-dimensional gel electrophoresis of whole trypanosomes and various subcellular fractions failed to reveal any differences in mobility of VSG and other proteins. Northern blot analysis of mRNAs from serum-sensitive and serum-resistant clones showed no differences when probed with a previously described resistance-specific probe. In addition, the ethanolamine membrane transport system and the overall membrane lipid fluidity did not reveal any detectable biochemical or biophysical differences in membrane properties. If resistance to lysis is indeed mediated by membrane changes at the enzymatic or structural level, the data presented suggest that the gene product(s) responsible for this change in human serum sensitivity may be present in very small quantities.
Collapse
Affiliation(s)
- M R Rifkin
- Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
25
|
Lorenz P, Barth PE, Rudin W, Betschart B. Importance of acidic intracellular compartments in the lysis of Trypanosoma brucei brucei by normal human serum. Trans R Soc Trop Med Hyg 1994; 88:487-8. [PMID: 7570851 DOI: 10.1016/0035-9203(94)90443-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Lorenz P, James RW, Owen JS, Betschart B. Heterogeneity in the properties of the trypanolytic factor in normal human serum. Mol Biochem Parasitol 1994; 64:153-64. [PMID: 8078518 DOI: 10.1016/0166-6851(94)90143-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although it seems clear that the trypanolytic factor in human serum capable of killing Trypanosoma brucei brucei is high density lipoprotein (HDL), it nevertheless remains controversial as to whether the trypanolytic properties of HDL are confined to a specific subclass or whether all particles have activity. In the present study, we have compared the lytic activities of serum fractions from six normal individuals prepared by gradient ultracentrifugation and also, to avoid ultracentrifugally-induced loss of HDL apolipoproteins, by gel filtration using fast protein liquid chromatography (FPLC). All sera displayed trypanolytic activity in fractions corresponding to the general density (rho = 1.06-1.20 g ml-1) and size (59-440 kDa) limits conventionally used to describe bulk human HDL, the particles between rho = 1.18-1.20 g ml-1 and between 214-440 kDa being particularly lytic. But some sera additionally contained fractions with powerful activity outside these density (rho > 1.24 g ml-1) and size (> 1000 kDa) ranges. Nevertheless, such fractions were considered to contain material with HDL characteristics; apolipoprotein A-I, the major protein of HDL, was always present and the lytic activity of the sera could be completely neutralized by absorption with HDL antiserum. We conclude that all of the trypanolytic activity in human sera is associated with HDL particles and that it is a property of several HDL subpopulations with very different density and size characteristics. Presumably the well-recognized wide variation in trypanocidal activity of normal human sera reflects differences in the quantities of these HDL subpopulations rather than in the total amount of a single, uniquely lytic particle.
Collapse
|
27
|
Abstract
Nearly 90 years after the discovery that certain African trypanosornes were killed by normal human serum, we still do not understand how this innate trypanocidal factor works. Biochemical studies have provided us with an unlikely candidate: human high-density lipoprotein (HDL). This trypanosome lytic factor (TLF) from human serum is important since its activity restricts the host range of Trypanosoma brucei brucei, and the expression of this natural killing factor in cattle would represent a novel approach to the control of bovine tryponosomiasis. Here, Steve Hajduk, Kristin Hager and Jeffrey Esko discuss evidence for the TLF being a minor subclass of serum HDL and propose a mechanism for lysis based on the binding, endocytosis and lysosomal targeting of TLF.
Collapse
Affiliation(s)
- S L Hajduk
- Department of Biochemistry, the University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
28
|
Gillett MP, Owen JS. Characteristics of the binding of human and bovine high-density lipoproteins by bloodstream forms of the African trypanosome, Trypanosoma brucei brucei. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1123:239-48. [PMID: 1536861 DOI: 10.1016/0005-2760(92)90002-d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bloodstream forms of Trypanosoma brucei brucei are unable to synthesize cholesterol but appear to bind and take up plasma low-density lipoproteins (LDL) from their host. Whether cholesterol homeostasis of this unicellular parasite also requires interactions with host high-density lipoprotein (HDL) particles is unknown. Equilibrium binding of radioiodinated apolipoprotein E-depleted human HDL3 (d = 1.125-1.21 g/ml) and bovine HDL (d = 1.063-1.21 g/ml) by T.b.brucei was rapid (less than 30 min) at 4 degrees C and was characterized by a saturable, specific component. There were five times the number of high-affinity binding sites for human HDL3 as for bovine HDL (64,000 vs. 11,500 per trypanosome) and their binding affinity was greater with an equilibrium dissociation constant (Kd) of 157 nM compared to 315 nM for bovine HDL). Binding of rat and rabbit HDL3 was similar to bovine HDL. By contrast, equilibrium binding of human LDL was slower (approximately 6 h) and the number of high-affinity binding sites (Kd = 23 nM) was much lower for this ligand (660 per trypanosome). Total binding of HDL3 was independent of divalent cations and was only slightly inhibited by heparin, but when the trypanosomes were preincubated with trypsin or pronase the binding was markedly reduced. After 30 min at 37 degrees C, binding of bovine HDL and human HDL3 was 10-20% higher than at 4 degrees C; after 45 min trypanolysis occurred with human HDL3 but not with bovine HDL. Chemical modification of HDL3 by treatment with cyclohexanedione, by acetylation or by reductive alkylation had little effect on its ability to compete with [125I]labelled HDL3 for binding by the parasite. Nitrosylation of HDL3 with tetranitromethane increased its binding ability, suggesting that trypanosomes might possess scavenger receptors, and native HDL3 was less effective than nitrosylated HDL3 in displacing bound [125I]labelled nitrosylated HDL3. These findings suggest that, in addition to a receptor for LDL, T.b.brucei has other lipoprotein binding sites which separately recognize HDL from permissive host species such as bovine, trypanolytic HDL such as human HDL3, and more negatively charged HDL particles such as nitrosylated HDL3.
Collapse
Affiliation(s)
- M P Gillett
- University Department of Medicine, Royal Free Hospital School of Medicine, University of London, U.K
| | | |
Collapse
|
29
|
De Greef C, Imberechts H, Matthyssens G, Van Meirvenne N, Hamers R. A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 1989; 36:169-76. [PMID: 2528066 DOI: 10.1016/0166-6851(89)90189-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human infective African trypanosomes are host range variants of Trypanosoma brucei which are resistant to a lytic component in primate serum. T. b. rhodesiense occurs both as a form sensitive to lysis by normal human serum and as a form resistant to this lysis. Switching from one phenotype to the other has been observed in both directions. In the cloned T. b. rhodesiense ETAR1-repertoire we have detected 1.5-kb mRNAs only present in the resistant forms. In T. b. gambiense, which always occurs as a normal human serum-resistant form, no such transcript could be detected, indicating that another mechanism of resistance is involved here. Starting from an independent non-cloned T. b. rhodesiense population isolated from an infected patient, both resistant and sensitive trypanosomes have been prepared. Northern blot analysis of the total RNA prepared from these populations has revealed again the differential occurrence of the resistance-specific transcript, indicating that we are dealing with a general phenomenon associated with serum resistance in T. b. rhodesiense. As expected, Southern blot analyses have demonstrated that both serum-resistant and serum-sensitive forms of T. b. rhodesiense contain the gene coding for this transcript.
Collapse
Affiliation(s)
- C De Greef
- Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, St.-Genesius Rode, Belgium
| | | | | | | | | |
Collapse
|
30
|
|