Theocharis DA, Coutsogeorgopoulos C. Mechanism of action of sparsomycin in protein synthesis.
Biochemistry 1992;
31:5861-8. [PMID:
1610829 DOI:
10.1021/bi00140a023]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Before CI isomerizes to C*I, we detect a competitive phase of inhibition (Ki = k5/k4 = 0.05 microM) which eventually, by increasing the concentration of I, becomes linear mixed noncompetitive and involves C*I in place of CI. The equilibration of C and I according to reaction 2 is much slower than the equilibration between C and S in reaction 1 (time-dependent inhibition). The inactivation plots obey reaction 2 and allow us to estimate k6 as equal to 2.2 min-1. The isomerized C*I, free of excess I, can be studied as a mixture with complex C. From the kinetics of the regeneration of C from C*I, in the presence of puromycin, we can estimate k7 to be between 0.22 min-1 and 0.06 min-1. Although the isomerized C*I survives after adsorption on cellulose nitrate filter disks, it does not survive after gel chromatography on a Sepharose CL-4B column but is converted quantitatively to complex C containing D of unchanged reactivity. This result does not support the proposed [Flynn, G. A., & Ash, R. J., (1990) Biochem. Biophys. Res. Commun. 166, 673-680] chemical reaction between D and I toward new products. The isomerized C*I can be obtained not only from the already-made complex C but also de novo from D, R, and M. In the latter case, the reactions which lead to C are represented by the following hypothetical scheme: D + R + M in equilibrium with DRM or C (binding reaction). When C*I is formed de novo, this reaction is coupled to reaction 2 and the ultimate product is a mixture of C and C*I.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse