1
|
Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci 2018; 43:668-684. [PMID: 30054232 PMCID: PMC6108949 DOI: 10.1016/j.tibs.2018.06.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
Macrolide antibiotics inhibit protein synthesis by targeting the bacterial ribosome. They bind at the nascent peptide exit tunnel and partially occlude it. Thus, macrolides have been viewed as 'tunnel plugs' that stop the synthesis of every protein. More recent evidence, however, demonstrates that macrolides selectively inhibit the translation of a subset of cellular proteins, and that their action crucially depends on the nascent protein sequence and on the antibiotic structure. Therefore, macrolides emerge as modulators of translation rather than as global inhibitors of protein synthesis. The context-specific action of macrolides is the basis for regulating the expression of resistance genes. Understanding the details of the mechanism of macrolide action may inform rational design of new drugs and unveil important principles of translation regulation.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Yamashoji S, Manome I, Ikedo M. Menadione-catalyzed O2- production by Escherichia coli cells: application of rapid chemiluminescent assay to antimicrobial susceptibility testing. Microbiol Immunol 2002; 45:333-40. [PMID: 11471820 DOI: 10.1111/j.1348-0421.2001.tb02628.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study proposes a novel chemiluminescent assay of bacterial activity. Luminol chemiluminescence (LC) was amplified on addition of menadione to Escherichia coli suspension, and it was effectively inhibited by addition of superoxide dismutase rather than catalase. This fact suggests that H2O2 produced from O2 by superoxide dismutase is decomposed by catalase of E. coli. NAD(P)H:menadione reductase activities in periplasm and cytosol corresponded to the amplification of menadione-catalyzed LC, and outer and cytoplasmic membranes were only slightly involved in the LC. The total activity and Vmax of NAD(P)H:menadione reductase in the cytoplasm were greater than those in the periplasm. A transient increase in menadione-catalyzed LC was observed in the exponential phase and the LC decreased in the stationary phase during growth of E. coli. Menadione-catalyzed LC was sensitive to antibiotic action. A decrease in menadione-catalyzed LC by the impairment of membrane functions and by the inhibition of protein synthesis was observed at 5 min and 3 hr, respectively. These findings suggest the possibility that menadione-catalyzed luminol chemiluminescent assay is applicable to rapid antimicrobial assay because LC is sensitive to the change in growth and cytotoxic events caused by antimicrobial agents.
Collapse
|
3
|
Kirillov S, Porse BT, Vester B, Woolley P, Garrett RA. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Lett 1997; 406:223-33. [PMID: 9136892 DOI: 10.1016/s0014-5793(97)00261-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Determining how antibiotics inhibit ribosomal activity requires a detailed understanding of the interactions and relative movement of tRNA, mRNA and the ribosome. Recent models for the formation of hybrid tRNA binding sites during the elongation cycle have provided a basis for re-evaluating earlier experimental data and, especially, those relevant to substrate movements through the peptidyl transferase centre. With the exception of deacylated tRNA, which binds at the E-site, ribosomal interactions of the 3'-ends of the tRNA substrates generate only a small part of the total free energy of tRNA-ribosome binding. Nevertheless, these relatively weak interactions determine the unidirectional movement of tRNAs through the ribosome and, moreover, they appear to be particularly susceptible to perturbation by antibiotics. Here we summarise current ideas relating particularly to the movement of the 3'-ends of tRNA through the ribosome and consider possible inhibitory mechanisms of the peptidyl transferase antibiotics.
Collapse
Affiliation(s)
- S Kirillov
- RNA Regulation Centre, Institute of Molecular Biology, Copenhagen University, Denmark
| | | | | | | | | |
Collapse
|
4
|
Rheinberger HJ, Nierhaus KH. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:643-50. [PMID: 2249685 DOI: 10.1111/j.1432-1033.1990.tb19382.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(U)-programmed 70S ribosomes can be shown to be 80% to 100% active in binding the peptidyl-tRNA analogue AcPhe-tRNA to their A or P sites, respectively. Despite this fact, only a fraction of such ribosomes primed with AcPhe-tRNA participate in poly(U)-directed poly(Phe) synthesis (up to 65%) at 14 mM Mg2+ and 160 mM NH4+. Here it is demonstrated that the apparently 'inactive' ribosomes (greater than or equal to 35%) are able to participate in peptide-bond formation, but lose their nascent peptidyl-tRNA at the stage of Ac(Phe)n-tRNA, with n greater than or equal to 2. The relative loss of early peptidyl-tRNAs is largely independent of the degree of initial saturation with AcPhe-tRNA and is observed in a poly(A) system as well. This observation resolves a current controversy concerning the active fraction of ribosomes. The loss of Ac(Phe)n-tRNA is reduced but still significant if more physiological conditions for Ac(Phe)n synthesis are applied (3 mM Mg2+, 150 mM NH4+, 2 mM spermidine, 0.05 mM spermine). Chloramphenicol (0.1 mM) blocks the puromycin reaction with AcPhe-tRNA as expected but, surprisingly, does not affect the puromycin reaction with Ac(Phe)2-tRNA nor peptide bond formation between AcPhe-tRNA and Phe-tRNA. The drug facilitates the release of Ac(Phe)2-4-tRNA from ribosomes at 14 mM Mg2+ while it hardly affects the overall synthesis of poly(Phe) or poly(Lys).
Collapse
Affiliation(s)
- H J Rheinberger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Federal Republic of Germany
| | | |
Collapse
|
5
|
Vester B, Garrett RA. A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie 1987; 69:891-900. [PMID: 2447958 DOI: 10.1016/0300-9084(87)90217-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Primer-directed mutagenesis was employed to introduce an A2058----G transition in plasmid-encoded Escherichia coli 23S RNA at a site that has been implicated, indirectly, in erythromycin binding. The mutation raises the growth tolerance of cells from 30 to 300 micrograms/ml of erythromycin, and cells grown in the presence of erythromycin contain ribosomes with high levels of mutated 23S RNA. In these cells, wild type 50S subunits 'fall off' the message and are selectively degraded, possibly as a result of an erythromycin-induced conformational change. A fast in vitro poly(U) assay revealed minimal effects of erythromycin on elongation beyond tetrapeptides. We correlated these results with the literature data and concluded that erythromycin acts immediately post-initiation and directly, or indirectly, destabilizes mRNA-bound 70S ribosomes, and prevents their recycling by causing 50S subunit degradation.
Collapse
Affiliation(s)
- B Vester
- Biostructural Chemistry, Kemisk Institut, Aarhus Universitet, Denmark
| | | |
Collapse
|
6
|
Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 16:103-32. [PMID: 6203682 DOI: 10.3109/10409238409102300] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regulation of ermC is described in detail as an example of regulation on the level of translation. ermC specifies a ribosomal RNA methylase which confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics. Synthesis of the ermC gene product is induced by erythromycin, a macrolide antibiotic. Stimulation of methylase synthesis is mediated by binding of erythromycin to an unmethylated ribosome. The translational attenuation model, supported by sequencing data and by mutational analysis, proposes that binding of erythromycin causes stalling of a ribosome during translation of a "leader peptide", resulting in isomerization of the ermC transcript from an inactive to an active conformer. The ermC system is analogous to the transcriptional attenuation systems described for certain biosynthetic operons. ermC is unique in that interaction with a small molecule inducer mediates regulation on the translational level. However, it is but one example of nontranscriptional -level control of protein synthesis. Other systems are discussed in which control is also exerted through alterations of RNA conformation and an attempt is made to understand ermC in this more general context. Finally, other positive examples of translational attenuation are presented.
Collapse
|
7
|
Hahn J, Grandi G, Gryczan TJ, Dubnau D. Translational attenuation of ermC: a deletion analysis. MOLECULAR & GENERAL GENETICS : MGG 1982; 186:204-16. [PMID: 6810064 DOI: 10.1007/bf00331851] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ermC is a plasmid gene which specifies resistance to macrolide-lincosamide-streptogramin B antibiotics. The product of ermC was previously shown to be an inducible rRNA methylase, which is regulated translationally, and a mechanism for this regulation, termed the translational attenuation model, has been proposed. This model postulates that alternative inactive and active conformational states of the ermC mRNA are modulated by erythromycin-induced ribosome-stalling during translation of a leader peptide. In the present study the translational attenuation model was tested by constructing a series of deletants missing the ermC promoter and portions of the regulatory (leading) region. In these mutants, ermC transcription is dependent on fusion to an upstream promoter. Depending on the terminus of each deletion within the regulatory region, determined by DNA sequencing, ermC expression is observed to be either high level and inducible (like the wild-type), high level and noninducible, or low level and noninducible. The translational attenuation model predicts that as the deletions extend deeper into the leader region, successively masking and unmasking sequences required for translation of the methylase, an alternation of high and low level methylase expression will be observed. These predictions are confirmed. Based on this and other information, the model is refined and extended, and both direct translational activation and kinetic trapping of a metastable active intermediate during transcription are proposed to explain basal synthesis of methylase and to rationalize the effects of certain regulatory mutants.
Collapse
|
8
|
Otaka T, Kaji A. Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A. Proc Natl Acad Sci U S A 1975; 72:2649-52. [PMID: 1101261 PMCID: PMC432827 DOI: 10.1073/pnas.72.7.2649] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Erythromycin A released peptidyl-tRNA in the in vitro polypeptide synthesis system with bacterial components programmed by synthetic polynucleotide. This is consistent with our hypothesis that erythromycin A inhibits translocation by preventing proper situation of oligopeptidyl-tRNA in the donor (D) site on ribosomes.
Collapse
|
9
|
Teraoka H, Tanaka K. Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus. J Bacteriol 1974; 120:316-21. [PMID: 4138441 PMCID: PMC245766 DOI: 10.1128/jb.120.1.316-321.1974] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ribosomes from an erythromycin-producing strain, Streptomyces erythreus, lacked affinity for erythromycin and were also resistant to other macrolide antibiotics (leucomycin, spiramycin, and tylosin) and to lincomycin, whereas Streptomyces griseus B(3) ribosomes were susceptible to all of these antibiotics.
Collapse
|
10
|
Miskin R, Zamir A. Enhancement of peptidyl transferase activity by antibiotics acting on the 50 S ribosomal subunit. J Mol Biol 1974; 87:121-34. [PMID: 4610151 DOI: 10.1016/0022-2836(74)90564-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
|
12
|
Tanaka S, Otaka T, Kaji A. Further studies on the mechanism of erythromycin action. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 331:128-40. [PMID: 4586628 DOI: 10.1016/0005-2787(73)90425-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Garrett ER, Heman-Ackah SM. Microbial kinetics and dependencies of individual and combined antibiotic inhibitors of protein biosynthesis. Antimicrob Agents Chemother 1973; 4:574-84. [PMID: 4598850 PMCID: PMC444598 DOI: 10.1128/aac.4.5.574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The generation rate constants for the steady-state growth of antibiotic-inhibited Escherichia coli have the same formal dependency on concentration for deoxylincomycin, lincomycin (phase I), erythromycin, clindamycin, and U24729A. They may be kinetically classified as a group A, in which the first three compounds comprise a subgroup A(1) and the latter two a subgroup A(2). Generation rate constants initially decrease linearly with concentration but asymptotically approach zero at higher concentrations. With tetracycline or chloramphenicol, the generation rate decreases linearly with all concentrations, and these compounds may be kinetically classified as group B. Combining an antibiotic from group A with one from group B gives a response equal to that obtained with equivalent amounts of each antibiotic alone, and there are no significant effects from the order of antibiotic addition. However, combinations of an A(1) with an A(2) antibiotic are antagonistic, and there are significant effects from the order of addition. The dependencies of generation rate constants in the presence of these antibiotics can be rationalized by a receptor site model that considers varying degrees of the rate of drug transfer and drug inactivation in the organism.
Collapse
|
14
|
Harris R, Symons R. On the molecular mechanism of action of certain substrates and inhibitors of ribosomal peptidyl transferase. Bioorg Chem 1973. [DOI: 10.1016/0045-2068(73)90028-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Obrig TG, Irvin JD, Hardesty B. The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II. Arch Biochem Biophys 1973; 155:278-89. [PMID: 4705425 DOI: 10.1016/0003-9861(73)90116-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
|
17
|
Kubota K, Okuyama A, Tanaka N. Differential effects of antibiotics on peptidyl transferase reactions. Biochem Biophys Res Commun 1972; 47:1196-202. [PMID: 4555251 DOI: 10.1016/0006-291x(72)90961-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Tanaka K, Tamaki M, Takata R, Osawa S. Low affinity for chloramphenicol of erythromycin resistant Escherichia coli ribosomes having an altered protein component. Biochem Biophys Res Commun 1972; 46:1979-83. [PMID: 4553152 DOI: 10.1016/0006-291x(72)90747-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Cannon M, Burns K. Modes of action of erythromycin and thiostrepton as inhibitors of protein synthesis. FEBS Lett 1971; 18:1-5. [PMID: 11946068 DOI: 10.1016/0014-5793(71)80392-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Michael Cannon
- Department of Biochemistry, University of London King's College, WC2, London, England
| | | |
Collapse
|