1
|
Yasuda T, Morita R, Shigeta Y, Harada R. Ribosome Tunnel Environment Drives the Formation of α-Helix during Cotranslational Folding. J Chem Inf Model 2024; 64:6610-6622. [PMID: 39150098 PMCID: PMC11351022 DOI: 10.1021/acs.jcim.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Protein conformations in cells are not solely determined by amino acid sequences; they also depend on cellular environments. For instance, the ribosome tunnel induces its specific α-helix formation during cotranslational folding. Owing to the link between these temporally α-helix and biological functions, the mechanism of α-helix formation inside the ribosome tunnel has been previously explored. Consequently, the conformational restrictions of the tunnel were considered one of the driving forces of α-helix formation. Conversely, the ribosomal tunnel environment, including its chemical properties, appears to influence the α-helix formation. However, a comprehensive analysis of the ribosome tunnel environment's impact on the α-helix formation has not been conducted yet due to challenges in experimentally controlling it. Therefore, as a new computational approach, we proposed a ribosome environment-mimicking model (REMM) based on the radius and components of the experimentally determined ribosome tunnel structures. Using REMM, we assessed the impact of the ribosome tunnel environment on α-helix formation. Herein, we employed carbon nanotubes (CNT) as a reference model alongside REMM because CNT reproduce conformational restrictions rather than the ribosome tunnel environment. Quantitatively, the ability to reproduce the α-helix of nascent peptides in the experimental structure was compared between the CNT and REMM using enhanced all-atom molecular dynamics simulations. Consequently, the REMM more accurately reproduced the α-helix of the nascent peptides than the CNT, highlighting the significance of the ribosome tunnel environment in α-helix formation. Additionally, we analyzed the properties of the peptide inside each model to reveal the mechanism of ribosome tunnel-specific α-helix formation. Consequently, we revealed that the chemical diversities of the tunnel are essential for the formation of backbone-to-backbone hydrogen bonds in the peptides. In conclusion, the ribosome tunnel environment, with the diverse chemical properties, drives its specific α-helix formation. By proposing REMM, we newly provide the technical basis for investigating the protein conformations in various cellular environments.
Collapse
Affiliation(s)
- Takunori Yasuda
- Doctoral
Program in Biology, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Rikuri Morita
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
4
|
Wang Q, Lin J. Environment-specificity and universality of the microbial growth law. Commun Biol 2022; 5:891. [PMID: 36045217 PMCID: PMC9433384 DOI: 10.1038/s42003-022-03815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAs the nutrient quality changes, the fractions of ribosomal proteins in the proteome are usually positively correlated with the growth rates due to the auto-catalytic nature of ribosomes. While this growth law is observed across multiple organisms, the relation between the ribosome fraction and growth rate is often more complex than linear, beyond models assuming a constant translation speed. Here, we propose a general framework of protein synthesis considering heterogeneous translation speeds and protein degradations. We demonstrate that the growth law curves are generally environment-specific, e.g., depending on the correlation between the translation speeds and ribosome allocations among proteins. Our predictions of ribosome fractions agree quantitatively with data of Saccharomyces cerevisiae. Interestingly, we find that the growth law curve of Escherichia coli nevertheless appears universal, which we prove must exhibit an upward bending in slow-growth conditions, in agreement with experiments. Our work provides insights on the connection between the heterogeneity among genes and the environment-specificity of cell behaviors.
Collapse
|
5
|
Tao P, Xiao Y. Role of cotranslational folding for β-sheet-enriched proteins: A perspective from molecular dynamics simulations. Phys Rev E 2022; 105:024402. [PMID: 35291071 DOI: 10.1103/physreve.105.024402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The formations of correct three-dimensional structures of proteins are essential to their functions. Cotranslational folding is vital for proteins to form correct structures in vivo. Although some experiments have shown that cotranslational folding can improve the efficiency of folding, its microscopic mechanism is not yet clear. Previously, we built a model of the ribosomal exit tunnel and investigated the cotranslational folding of a three-helix protein by using all-atom molecular dynamics simulations. Here we study the cotranslational folding of three β-sheet-enriched proteins using the same method. The results show that cotranslational folding can enhance the helical population in most cases and reduce non-native long-range contacts before emerging from the ribosomal exit tunnel. After exiting the tunnel, all proteins fall into local minimal states and the structural ensembles of cotranslational folding show more helical conformations than those of free folding. In particular, for one of the three proteins, the GTT WW domain, we find that one local minimum state of the cotranslational folding is the known folding intermediate, which is not found in free folding. This result suggests that the cotranslational folding may increase the folding efficiency by accelerating the sampling more than by avoiding the misfolded state, which is presently a mainstream viewpoint.
Collapse
Affiliation(s)
- Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
6
|
Parker DJ, Lalanne JB, Kimura S, Johnson GE, Waldor MK, Li GW. Growth-Optimized Aminoacyl-tRNA Synthetase Levels Prevent Maximal tRNA Charging. Cell Syst 2020; 11:121-130.e6. [PMID: 32726597 DOI: 10.1016/j.cels.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/07/2020] [Accepted: 07/02/2020] [Indexed: 01/28/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) serve a dual role in charging tRNAs. Their enzymatic activities both provide protein synthesis flux and reduce uncharged tRNA levels. Although uncharged tRNAs can negatively impact bacterial growth, substantial concentrations of tRNAs remain deacylated even under nutrient-rich conditions. Here, we show that tRNA charging in Bacillus subtilis is not maximized due to optimization of aaRS production during rapid growth, which prioritizes demands in protein synthesis over charging levels. The presence of uncharged tRNAs is alleviated by precisely tuned translation kinetics and the stringent response, both insensitive to aaRS overproduction but sharply responsive to underproduction, allowing for just enough aaRS production atop a "fitness cliff." Notably, we find that the stringent response mitigates fitness defects at all aaRS underproduction levels even without external starvation. Thus, adherence to minimal, flux-satisfying protein production drives limited tRNA charging and provides a basis for the sensitivity and setpoints of an integrated growth-control network.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Grace E Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Trends Biochem Sci 2018; 43:938-950. [PMID: 30337135 DOI: 10.1016/j.tibs.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/23/2022]
Abstract
Great progress has been made toward solving the atomic structure of the ribosome, which is the main biosynthetic machine in cells, but we still do not have a full picture of exactly how cellular ribosomes function. Based on the analysis of crystallographic and electron microscopy data, we propose a basic model of the structural organization of ribosomes into a compartment. This compartment is regularly formed by arrays of ribosomal tetramers made up of two dimers that are actually facing in opposite directions. The compartment functions as the main 'factory' for the production of cellular proteins. The model is consistent with the existing biochemical and genetic data. We also consider the functional connections of such a compartment with cellular transcription and ribosomal biogenesis.
Collapse
|
8
|
Plochowietz A, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Res 2016; 45:926-937. [PMID: 27625389 PMCID: PMC5314786 DOI: 10.1093/nar/gkw787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 07/29/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022] Open
Abstract
Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 μm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.
Collapse
Affiliation(s)
- Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Ian Farrell
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA.,Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Zeev Smilansky
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| |
Collapse
|
9
|
Pouyet F, Bailly-Bechet M, Mouchiroud D, Guéguen L. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage. Genome Biol Evol 2016; 8:2427-41. [PMID: 27401173 PMCID: PMC5010899 DOI: 10.1093/gbe/evw165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences.
Collapse
Affiliation(s)
- Fanny Pouyet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Marc Bailly-Bechet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Dominique Mouchiroud
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| |
Collapse
|
10
|
Rapid Curtailing of the Stringent Response by Toxin-Antitoxin Module-Encoded mRNases. J Bacteriol 2016; 198:1918-1926. [PMID: 27137501 DOI: 10.1128/jb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Escherichia coli regulates its metabolism to adapt to changes in the environment, in particular to stressful downshifts in nutrient quality. Such shifts elicit the so-called stringent response, coordinated by the alarmone guanosine tetra- and pentaphosphate [(p)ppGpp]. On sudden amino acid (aa) starvation, RelA [(p)ppGpp synthetase I] activity is stimulated by binding of uncharged tRNAs to a vacant ribosomal site; the (p)ppGpp level increases dramatically and peaks within the time scale of a few minutes. The decrease of the (p)ppGpp level after the peak is mediated by the decreased production of mRNA by (p)ppGpp-associated transcriptional regulation, which reduces the vacant ribosomal A site and thus constitutes negative feedback to the RelA-dependent (p)ppGpp synthesis. Here we showed that on sudden isoleucine starvation, this peak was higher in an E. coli strain that lacks the 10 known mRNase-encoding toxin-antitoxin (TA) modules present in the wild-type (wt) strain. This observation suggested that toxins are part of the negative-feedback mechanism to control the (p)ppGpp level during the early stringent response. We built a ribosome trafficking model to evaluate the fold increase in RelA activity just after the onset of aa starvation. Combining this with a feedback model between the (p)ppGpp level and the mRNA level, we obtained reasonable fits to the experimental data for both strains. The analysis revealed that toxins are activated rapidly, within a minute after the onset of starvation, reducing the mRNA half-life by ∼30%. IMPORTANCE The early stringent response elicited by amino acid starvation is controlled by a sharp increase of the cellular (p)ppGpp level. Toxin-antitoxin module-encoded mRNases are activated by (p)ppGpp through enhanced degradation of antitoxins. The present work shows that this activation happens over a very short time scale and that the activated mRNases negatively affect the (p)ppGpp level. The proposed mathematical model of (p)ppGpp regulation through the mRNA level highlights the importance of several feedback loops in early (p)ppGpp regulation.
Collapse
|
11
|
Gloge F, Becker AH, Kramer G, Bukau B. Co-translational mechanisms of protein maturation. Curr Opin Struct Biol 2013; 24:24-33. [PMID: 24721450 DOI: 10.1016/j.sbi.2013.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/05/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Protein biogenesis integrates multiple finely regulated mechanisms, ensuring nascent polypeptide chains are correctly enzymatically processed, targeted to membranes and folded to native structure. Recent studies show that the cellular translation machinery serves as hub that coordinates the maturation events in space and time at various levels. The ribosome itself serves as docking site for a multitude of nascent chain-interacting factors. The movement of ribosomes along open reading frames is non-uniformous and includes pausing sites, which facilitates nascent chain folding and perhaps factor engagement. Here we summarize current knowledge and discuss emerging concepts underlying the critical interplay between translation and protein maturation in E. coli.
Collapse
Affiliation(s)
- Felix Gloge
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Annemarie H Becker
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Günter Kramer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| |
Collapse
|
12
|
Abstract
Bacterial growth is crucially dependent on protein synthesis and thus on the cellular abundance of ribosomes and related proteins. Here, we show that the slow diffusion of the bulky tRNA complexes in the crowded cytoplasm imposes a physical limit on the speed of translation, which ultimately limits the rate of cell growth. To study the required allocation of ancillary translational proteins to alleviate the effect of molecular crowding, we develop a model for cell growth based on a coarse-grained partitioning of the proteome. We find that coregulation of ribosome- and tRNA-affiliated proteins is consistent with measured growth-rate dependencies and results in near-optimal allocation over a broad range of growth rates. The analysis further resolves a long-standing controversy in bacterial growth physiology concerning the growth-rate dependence of translation speed and serves as a caution against premature identification of phenomenological parameters with mechanistic processes.
Collapse
|
13
|
Gilchrist MA, Wagner A. A model of protein translation including codon bias, nonsense errors, and ribosome recycling. J Theor Biol 2006; 239:417-34. [PMID: 16171830 DOI: 10.1016/j.jtbi.2005.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/15/2022]
Abstract
We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias.
Collapse
Affiliation(s)
- Michael A Gilchrist
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 37996, USA.
| | | |
Collapse
|
14
|
Jungbauer LM, Bakke CK, Cavagnero S. Experimental and Computational Analysis of Translation Products in Apomyoglobin Expression. J Mol Biol 2006; 357:1121-43. [PMID: 16483602 DOI: 10.1016/j.jmb.2006.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/24/2005] [Accepted: 01/03/2006] [Indexed: 11/21/2022]
Abstract
This work focuses on the experimental analysis of the time-course of protein expression in a cell-free system, in conjunction with the development of a computational model, denoted as progressive chain buildup (PCB), able to simulate translation kinetics and product formation as a function of starting reactant concentrations. Translation of the gene encoding the apomyoglobin (apoMb) model protein was monitored in an Escherichia coli cell-free system under different experimental conditions. Experimentally observed protein expression yields, product accumulation time-course and expression completion times match with the predictions by the PCB model. This algorithm regards elementary single-residue elongations as apparent second-order events and it accounts for aminoacyl-tRNA regeneration during translation. We have used this computational approach to model full-length protein expression and to explore the kinetic behavior of incomplete chains generated during protein biosynthesis. Most of the observed incomplete chains are non-obligatory dead-end species, in that their formation is not mandatory for full-length protein expression, and that they are unable to convert to the expected final translation product. These truncated polypeptides do not arise from post-translational degradation of full-length protein, but from a distinct subpopulation of chains which expresses intrinsically more slowly than the population leading to full-length product. The PCB model is a valuable tool to predict full-length and incomplete chain populations and formulate experimentally testable hypotheses on their origin. PCB simulations are applicable to E.coli cell-free expression systems (both in batch and dialysis mode) under the control of T7 RNA polymerase and to other environments where transcription and translation can be regarded as kinetically decoupled.
Collapse
Affiliation(s)
- Lisa M Jungbauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
15
|
Arnold S, Siemann-Herzberg M, Schmid J, Reuss M. Model-based inference of gene expression dynamics from sequence information. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:89-179. [PMID: 16270657 DOI: 10.1007/b136414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dynamic model of prokaryotic gene expression is developed that makes considerable use of gene sequence information. The main contribution arises from the fact that the combined gene expression model allows us to access the impact of altering a nucleotide sequence on the dynamics of gene expression rates mechanistically. The high level of detail of the mathematical model is considered as an important step towards bringing together the tremendous amount of biological in-depth knowledge that has been accumulated at the molecular level, using a systems level analysis (in the sense of a bottom-up, inductive approach). This enables to the model to provide highly detailed insights into the various steps of the protein expression process and it allows us to access possible targets for model-based design. Taken as a whole, the mathematical gene expression model presented in this study provides a comprehensive framework for a thorough analysis of sequence-related effects on the stages of mRNA synthesis, mRNA degradation and ribosomal translation, as well as their nonlinear interconnectedness. Therefore, it may be useful in the rational design of recombinant bacterial protein synthesis systems, the modulation of enzyme activities in pathway design, in vitro protein biosynthesis, and RNA-based vaccination.
Collapse
Affiliation(s)
- Sabine Arnold
- Biotechnology R&D, DSM Nutritional Products Ltd., Bldg. 203/113A, 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
16
|
Abstract
The trigger factor of Escherichia coli is a prolyl isomerase and a chaperone. It interacts with the ribosome and affects the folding of newly formed protein chains. Therefore, the dynamics of the interactions of trigger factor with the ribosome and with unfolded protein chains should be tailored for this function. Previously, we had found that binding of unfolded proteins to trigger factor is fast and that the lifetime of the complex between these two components is only about 100 ms. Here, we have labeled the trigger factor in its amino-terminal, ribosome-binding domain with a fluorescent dye and investigated how it interacts with the ribosome. We found that this association, as well as the dissociation of the complex, are rather slow processes. The average lifetime of the complex is about 30 seconds (at 20 degrees C). The strong differences in the dynamics of the interactions of trigger factor with the ribosome and with protein substrates might ensure that, on the one hand, trigger factor remains bound to the ribosome while a protein chain is being synthesized, and, on the other hand, allows it to scan the newly formed protein for prolyl bonds that need catalysis of isomerization.
Collapse
Affiliation(s)
- Raimund Maier
- Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
17
|
Wolfson AD, Uhlenbeck OC. Modulation of tRNAAla identity by inorganic pyrophosphatase. Proc Natl Acad Sci U S A 2002; 99:5965-70. [PMID: 11983895 PMCID: PMC122885 DOI: 10.1073/pnas.092152799] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly sensitive assay of tRNA aminoacylation was developed that directly measures the fraction of aminoacylated tRNA by following amino acid attachment to the 3'-(32)P-labeled tRNA. When applied to Escherichia coli alanyl-tRNA synthetase, the assay allowed accurate measurement of aminoacylation of the most deleterious mutants of tRNA(Ala). The effect of tRNA(Ala) identity mutations on both aminoacylation efficiency (k(cat)/K(M)) and steady-state level of aminoacyl-tRNA was evaluated in the absence and presence of inorganic pyrophosphatase and elongation factor Tu. Significant levels of aminoacylation were achieved for tRNA mutants even when the k(cat)/K(M) value is reduced by as much as several thousandfold. These results partially reconcile the discrepancy between in vivo and in vitro analysis of tRNA(Ala) identity.
Collapse
Affiliation(s)
- Alexey D Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
18
|
Krab IM, te Biesebeke R, Bernardi A, Parmeggiani A. Elongation factor Ts can act as a steric chaperone by increasing the solubility of nucleotide binding-impaired elongation factor-Tu. Biochemistry 2001; 40:8531-5. [PMID: 11456491 DOI: 10.1021/bi0104930] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several elongation factor (EF) Tu mutants (T25A, H22Y/T25S, D80N, D138N) that have impaired nucleotide binding show decreased solubility on overexpression in the E. coli cell, an indication that they do not fold correctly. Moreover, EF-Tu[T25A] and EF-Tu[D80N] were shown to inhibit cell growth on expression, an effect attributed to their sequestration of EF-Ts [Krab, I. M., and Parmeggiani, A. (1999) J. Biol. Chem. 274, 11132--11138; Krab, I. M., and Parmeggiani, A. (1999) Biochemistry 38, 13035--13041]. We present here results showing that the co-overexpression of EF-Ts at a 1:1 ratio dramatically improves the solubility of mutant EF-Tu, although in the case of EF-Tu[D138N]--which cannot at all bind the nucleotides available in the cell--this is a slow process. Moreover, with co-overexpression of EF-Ts, the mentioned growth inhibition is relieved. We conclude that for the formation of a correct EF-Tu structure the nucleotide plays an important role as a "folding nucleus", and also that in its absence EF-Ts can act as a folding template or steric chaperone for the correct folding of EF-Tu.
Collapse
Affiliation(s)
- I M Krab
- Groupe de Biophysique-Equipe 2, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|
20
|
Stapulionis R, Kolli S, Deutscher MP. Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem 1997; 272:24980-6. [PMID: 9312103 DOI: 10.1074/jbc.272.40.24980] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian protein synthesizing system is highly organized in vivo, and its substrate, tRNA, is channeled throughout the translation process. However, the cellular components responsible for this organization are not known. To examine this question a series of studies was carried out using intact and permeabilized Chinese hamster ovary cells. We show that cold shock dramatically reduces the protein synthetic capacity of these cells by as much as 95%. The loss of activity can be reversed by a short recovery period under conditions that allow energy metabolism to occur; transcription and translation during the recovery period are not needed. While individual components of the translation apparatus are not inactivated by the cold shock, the supramolecular organization of the system appears to be altered and F-actin levels are found to decrease. Resumption of protein synthesis during the recovery period coincides closely with the restoration of F-actin to normal levels. Moreover, disruption of actin filaments, but not microtubules, also leads to a major reduction in translation. These data support the conclusion that the cellular microfilament network plays an important role in the structure and function of the translation system and that perturbations of this network can have profound effects on protein synthesis.
Collapse
Affiliation(s)
- R Stapulionis
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
21
|
Liu G, Tang J, Edmonds BT, Murray J, Levin S, Condeelis J. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Biophys Biochem Cytol 1996; 135:953-63. [PMID: 8922379 PMCID: PMC2133385 DOI: 10.1083/jcb.135.4.953] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin-binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F-actin, we have studied the effect of F-actin on the ability of EF-1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa-tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF-1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.
Collapse
Affiliation(s)
- G Liu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
22
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
23
|
Czworkowski J, Moore PB. The elongation phase of protein synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:293-332. [PMID: 8768078 DOI: 10.1016/s0079-6603(08)60366-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Czworkowski
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
24
|
Karimi R, Ehrenberg M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:355-60. [PMID: 8001552 DOI: 10.1111/j.1432-1033.1994.tb20059.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding stability of the aminoacyl-tRNA site (A-site), estimated from the dissociation rate constant kd, of AcPhe-Phe-tRNA(Phe) has been studied for wild-type (wt), for hyperaccurate ribosomes altered in S12 [streptomycin-dependent (SmD) and streptomycin-pseudodependent (SmP) phenotypes], for error-prone ribosomes altered in S4 (Ram phenotype), and for ribosomes in complex with the error-inducing aminoglycosides streptomycin and neomycin. The AcPhe2-tRNA stability is slightly and identically reduced for SmD and SmP phenotypes in relation to wt ribosomes. The stability is increased (kd is reduced) for Ram ribosomes to about the same extent as the proof-reading accuracy is decreased for this phenotype. kd is also reduced by the action of streptomycin and neomycin, but much less than the reduction in proof-reading accuracy induced by streptomycin. Similar kd values for SmD and SmP ribosomes indicate that the cause of streptomycin dependence is not excessive drop-off of peptidyl-tRNAs from the A-site.
Collapse
Affiliation(s)
- R Karimi
- Department of Molecular Biology, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
25
|
Förster C, Limmer S, Ribeiro S, Hilgenfeld R, Sprinzl M. Ternary complex between elongation factor Tu.GTP and Phe-tRNA(Phe). Biochimie 1993; 75:1159-66. [PMID: 8199251 DOI: 10.1016/0300-9084(93)90015-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of aminoacylation and ternary complex formation with elongation factor Tu.GTP on the tertiary structure of yeast tRNA(Phe) was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNA(Phe) does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNA(Phe) with elongation factor Tu.GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNA(Phe) upon binding to elongation factor Tu.GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNA(Phe)-elongation factor Tu-GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNA(Phe) preserves its typical L-shaped tertiary structure in the complex. At high (> 10(-4) M) ligand concentrations a complex between tRNA(Phe) and elongation factor Tu-GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNA(Phe) and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.
Collapse
Affiliation(s)
- C Förster
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | |
Collapse
|
26
|
Fedorov AN, Friguet B, Djavadi-Ohaniance L, Alakhov YB, Goldberg ME. Folding on the ribosome of Escherichia coli tryptophan synthase beta subunit nascent chains probed with a conformation-dependent monoclonal antibody. J Mol Biol 1992; 228:351-8. [PMID: 1453447 DOI: 10.1016/0022-2836(92)90825-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Experimental analysis of protein folding during protein synthesis on the ribosome is rendered very difficult by the low concentration of nascent polypeptides and the heterogeneity of the translation mixture. In this study, an original approach is developed for analysing nascent polypeptide structures still carried by the ribosome. Folding on the ribosome of nascent chains of the beta subunit of Escherichia coli tryptophan synthase was investigated using a monoclonal antibody (mAb 19) recognizing a conformation-dependent antigenic determinant. Upon synthesis of beta subunits in an E. coli coupled transcription-translation system, it is shown that ribosome-bound nascent polypeptides can react with the monoclonal antibody provided their size is above 11.5 kDa, which is smaller than that of both the N-terminal proteolytic and crystallographic domains (29 and 21 kDa, respectively). The gene fragments coding only for the 11.5 kDa polypeptide, with and without stop codon at the end of the corresponding mRNAs, were constructed and expressed in a cell-free wheat germ translation system. It is shown that antibody 19 reacts with this polypeptide either bound to the ribosome or free in solution. That the 11.5 kDa polypeptide acquires a condensed structure is shown by gel filtration in native conditions and by urea gradient gel electrophoresis. Moreover, it is demonstrated that this condensed structure resembles that of native beta 2 in the vicinity of the epitope for antibody 19. Indeed, the affinity of antibody 19 for the 11.5 kDa fragment, either free or bound to the ribosome, was measured (6 x 10(8) M-1) and shown to be close to that for native beta 2. It is therefore proposed that the polypeptide chain may start to fold during its biosynthesis and that, even before the appearance of an entire domain, a folded intermediate is formed that already exhibits some local structural features of the native state and of an immunoreactive intermediate previously detected during the in vitro refolding of denatured complete beta chains.
Collapse
Affiliation(s)
- A N Fedorov
- Institute of Protein Research, Academy of Sciences of Russia Pushchino, Moscow Region
| | | | | | | | | |
Collapse
|
27
|
Rasmussen OF, Shirvan MH, Margalit H, Christiansen C, Rottem S. Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. Biochem J 1992; 285 ( Pt 3):881-8. [PMID: 1386735 PMCID: PMC1132878 DOI: 10.1042/bj2850881] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nucleotide sequence of a 7.8 kbp DNA fragment from the genome of Mycoplasma gallisepticum has been determined. The fragment contains a cluster of nine tightly linked genes coding for the subunits of the M. gallisepticum ATPase. The gene order is I (I-subunit), B (a-subunit), E (c-subunit), F (b-subunit), H (delta-subunit), A (alpha-subunit), G (gamma-subunit), D (beta-subunit) and C (epsilon-subunit). Two open reading frames were identified in the flanking regions; one (ORFU), preceding the I gene, encodes at least 110 amino acids and the other (ORFS), following the C gene, encodes at least 90 amino acids. The deduced amino acid sequences of the various subunits are presented and discussed with regard to the structure, function and differing sensitivity of the M. gallisepticum enzyme to dicyclohexylcarbodiimide and aurovertin. The alpha- and beta-subunits of the F1 portion are well conserved (51% and 65% identity with those of Escherichia coli), whereas the gamma-, delta- and epsilon-subunits, as well as the F0-subunits, show a low percentage identity. Nonetheless, the secondary structure of the F0-subunits show a high degree of similarity to the corresponding subunits of E. coli. Two very strong potential amphipathic alpha-helices are predicted in the delta-subunit and the N-terminus of the b-subunit contains two hydrophobic helical stretches. The possible roles of these structural properties in the close association of the F1 and F0 multisubunit complexes among mycoplasmas are discussed.
Collapse
Affiliation(s)
- O F Rasmussen
- Department of Molecular Food Technology, Biotechnological Institute, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
28
|
Westerhoff HV, Welch GR. Enzyme organization and the direction of metabolic flow: physicochemical considerations. CURRENT TOPICS IN CELLULAR REGULATION 1992; 33:361-90. [PMID: 1499341 DOI: 10.1016/b978-0-12-152833-1.50026-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H V Westerhoff
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
29
|
Bensch K, Pieper U, Ott G, Schirmer N, Sprinzl M, Pingoud A. How many EF-Tu molecules participate in aminoacyl-tRNA binding? Biochimie 1991; 73:1045-50. [PMID: 1742349 DOI: 10.1016/0300-9084(91)90146-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The stoichiometry of the EF-Tu-GTP-aminoacyl-tRNA complex has been re-determined by a variety of methods, viz gel filtrations, fluorescence titrations, as well as hydrolysis and RNase protection experiments. The results of these experiments clearly demonstrate that one aminoacyl-tRNA interacts with only one EF-Tu-GTP molecule, in agreement with the established view and in contrast to the recently published results by Ehrenberg et al [6].
Collapse
Affiliation(s)
- K Bensch
- Abteilung Biophysikalische Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Ganoza MC, Cunningham C, Chung DG, Neilson T. A proposed role for IF-3 and EF-T in maintaining the specificity of prokaryotic initiation complex formation. Mol Biol Rep 1991; 15:33-8. [PMID: 1875917 DOI: 10.1007/bf00369898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Initiation factor-free 30S subunits of E. coli ribosomes bind aminoacyl-tRNAs more efficiently than fMet-tRNA(fMet). Elongator-tRNA binding was unaffected by IF-1 or IF-2 but was inhibited by IF-3. Their combination reduced this binding up to 40% and stimulated that of fMet-tRNA(fMet). Unexpectedly, EF-T also prevented elongator-tRNA binding by complexing both to the 30S and to the aminoacyl-tRNAs. Using AUGU3 as mRNA, elongator-tRNAs competed with fMet-fRNA(fMet) and with tRNA(fMet), fMet-tRNA(fMet) reacted with puromycin after addition of 50S subunits suggesting that it occupied the P site. EF-T directed binding of phe-tRNA to the 30S.AUGU3 complex at the A site only if fMet-tRNA(fMet) or tRNA(fMet) filled the P/E site. We propose that one function of EF-T may be to prevent the entry of aminoacyl-tRNAs into the 30S particle during initiation. The possibility that a special site for fMet-tRNA resides on 16S rRNA is also discussed.
Collapse
MESH Headings
- Binding Sites/physiology
- Binding, Competitive
- Escherichia coli
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational/physiology
- Peptide Elongation Factors/isolation & purification
- Peptide Elongation Factors/pharmacology
- Peptide Elongation Factors/physiology
- Peptide Initiation Factors/physiology
- Prokaryotic Initiation Factor-3
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Ser/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Ontario Canada
| | | | | | | |
Collapse
|
31
|
de Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 1990; 87:7668-72. [PMID: 2217199 PMCID: PMC54809 DOI: 10.1073/pnas.87.19.7668] [Citation(s) in RCA: 370] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have quantitatively analyzed the relationship between translational efficiency and the mRNA secondary structure in the initiation region. The stability of a defined hairpin structure containing a ribosome binding site was varied over 12 kcal/mol (1 cal = 4.184 J) by site-directed mutagenesis and the effects on protein yields were analyzed in vivo. The results reveal a strict correlation between translational efficiency and the stability of the helix. An increase in its delta G0 of -1.4 kcal/mol (i.e., less than the difference between an A.U and a G.C pair) corresponds to the reduction by a factor of 10 in initiation rate. Accordingly, a single nucleotide substitution led to the decrease by a factor of 500 in expression because it turned a mismatch in the helix into a match. We find no evidence that exposure of only the Shine-Dalgarno region or the start codon preferentially favors recognition. Translational efficiency is strictly correlated with the fraction of mRNA molecules in which the ribosome binding site is unfolded, indicating that initiation is completely dependent on spontaneous unfolding of the entire initiation region. Ribosomes appear not to recognize nucleotides outside the Shine-Dalgarno region and the initiation codon.
Collapse
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
32
|
Pingoud A, Gast FU, Peters F. The influence of the concentrations of elongation factors and tRNAs on the dynamics and accuracy of protein biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:252-8. [PMID: 2207151 DOI: 10.1016/0167-4781(90)90176-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computer simulations of the elongation cycle of bacterial protein biosynthesis demonstrate that the accuracy of protein biosynthesis cannot be explained by a mechanism which involves only an initial selection and a proofreading reaction. It is suggested that only a combination of initial selection, proofreading and a retardation of non-cognate flows at the level of the EF-Tu-catalyzed GTPase reaction and the peptidyl transfer can guarantee sufficient accuracy at reasonable costs. According to this view the ribosome functions as an allosteric enzyme which, in both its affinity and enzymatic activity, responds optimally only to the cognate substrate. Detailed calculations show, furthermore, that increasing the concentration of EF-G and EF-Ts above the level prevailing in vivo only slightly increases the rate of elongation. In contrast, increasing the concentration of EF-Tu over aminoacyl-tRNA (aa-tRNA) leads to a sharp decline in the rate of elongation. While varying the concentration of EF-G has no effect on the accuracy of protein synthesis, excess of EF-Tu over aminoacyl-tRNA leads to a large increase in accuracy. These results suggest a mechanism by which the accuracy of protein biosynthesis is preserved during amino acid starvation.
Collapse
Affiliation(s)
- A Pingoud
- Zentrum Biochemie, Medizinische Hochschule Hannover, F.R.G
| | | | | |
Collapse
|
33
|
Lill R, Crooke E, Guthrie B, Wickner W. The "trigger factor cycle" includes ribosomes, presecretory proteins, and the plasma membrane. Cell 1988; 54:1013-8. [PMID: 3046750 DOI: 10.1016/0092-8674(88)90116-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Trigger factor is a soluble, 63,000 dalton protein of E. coli that stabilizes proOmpA, the precursor form of a major outer-membrane protein, in a conformation competent for in vitro membrane assembly. There is approximately one trigger factor molecule bound to each 70S ribosome isolated from cell extracts in physiological buffers. Trigger factor dissociates from ribosomes in 1.5 M LiCl and reassociates with salt-washed ribosomes in low-salt buffer. Binding is exclusively to the 50S (large) subunit, known to contain the exit domain for nascent polypeptide chains. In addition to its associations with proOmpA and ribosomes, excess trigger factor can compete with the proOmpA-trigger factor complex for a limited number of membrane sites that are essential for translocation of proOmpA. These data suggest a model of trigger factor cycling between the cytoplasm, the ribosome, presecretory proteins, and membrane receptor proteins.
Collapse
Affiliation(s)
- R Lill
- Molecular Biology Institute, University of California, Los Angeles 90024-1570
| | | | | | | |
Collapse
|
34
|
Abstract
We studied the influence of an error-prone isoacceptor (tRNALeu4), as well as an intermediate (tRNALeu2) and a weak (tRNAVal) competitor of tRNAPhe on the poly(Phe) synthesis rate. Even at very high excess concentrations of these noncognate ternary complexes there was no significant effect on the translation rate. Our result argues against the assertion that in vivo translation is slowed down by noncognate tRNA and favours the hypothesis that the incorrect ternary complex concentrations are too low to saturate the ribosomes in vivo.
Collapse
Affiliation(s)
- N Bilgin
- Dept of Molecular Biology, Uppsala University, Sweden
| | | | | |
Collapse
|
35
|
Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 1987. [PMID: 2823108 DOI: 10.1128/mcb.7.8.2914] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.
Collapse
|
36
|
Abstract
The kinetics of the tRNA cycle is in itself capable of keeping the translational error level almost unaffected by amino acid starvation. There is no need to assume any yet unknown mechanism or property. Kinetic analysis shows that the concentration of aminoacyl-tRNA can stay high even for large reductions in aminoacylation, since the pool of uncharged tRNA normally is very small. An enhanced binding of uncharged tRNA to the ribosome could increase the effect and produce an extremely efficient error damping. A similar result is obtained when EF-Tu is partially inhibited by ppGpp.
Collapse
Affiliation(s)
- H Liljenström
- Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
37
|
Hoekema A, Kastelein RA, Vasser M, de Boer HA. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 1987; 7:2914-24. [PMID: 2823108 PMCID: PMC367910 DOI: 10.1128/mcb.7.8.2914-2924.1987] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.
Collapse
Affiliation(s)
- A Hoekema
- Department of Cell Genetics, Genentech, Inc., South San Francisco, California 94080
| | | | | | | |
Collapse
|
38
|
Abstract
This article provides an overview of the use of mathematical and computer modelling in furthering the understanding of protein synthesis. In particular, we discuss issues such as the nature of the rate limiting step(s), error rates, tRNA-codon adaptation, codon bias, attenuation control, and problems of selection and error corrections, focussing on their theoretical treatment.
Collapse
Affiliation(s)
- G von Heijne
- Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Abstract
The use of synonymous codons is strongly biased in the bacterium Escherichia coli and yeast, comprising both bias between codons recognized by the same transfer RNA and bias between groups of codons recognized by different synonymous tRNAs. A major determinant of the second sort of bias is tRNA content, codons recognized by abundant tRNAs being used more often than those recognised by rare tRNAs, particularly in highly expressed genes, probably owing to selection at the level of translation against codons recognized by rare tRNAs. Conversely, codon usage is likely to exert selection pressure on tRNA abundance. Here I develop a model for the coevolution of codon usage and tRNA abundance which explains why there are unequal abundances of synonymous tRNAs leading to biased usage between groups of codons recognized by them in unicellular organisms.
Collapse
|
40
|
Liljenström H, von Heijne G. Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol 1987; 124:43-55. [PMID: 2443765 DOI: 10.1016/s0022-5193(87)80251-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a model for calculating the protein production rate as a function of the translation rate. The model takes into account that the elongation rate along an mRNA molecule is non-uniform as a result of different tRNA availabilities for different codons. Initiation of ribosomes on an mRNA is normally the rate-limiting step in the translation process, and blocking of the initiation site can be avoided if the codons closest to this site allow fast translation by the ribosome. Hence, different selective forces may act on the choice of synonymous codons in the initiation region than elsewhere on a given mRNA. We show that the elongation rate along the whole mRNA influences the production rate of abundant proteins, whereas only the elongation rate in the initiation region is of importance for the production rate of rare proteins. We also present an analysis of the codon distribution along known mRNAs coding for abundant and rare proteins.
Collapse
Affiliation(s)
- H Liljenström
- Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
41
|
Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems 1987; 20:275-88. [PMID: 3113506 DOI: 10.1016/0303-2647(87)90035-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Though the mechanisms of protein biosynthesis are similar in the cells of prokaryotes and eukaryotes, the eukaryotic translational machinery in the cell is arranged more intricately. One of the most striking characteristic features of the eukaryotic translational machinery is that the eukaryotic proteins involved in the translational process, such as initiation factors, elongation factors and aminoacyl-tRNA synthetases, in contrast to their prokaryotic analogs, possess a non-specific affinity for RNA. Due to the RNA-binding ability, these eukaryotic proteins can be compartmentalized on polyribosomes. In addition to the proteins of the translational apparatus, several other eukaryotic RNA-binding proteins can be also compartmentalized on polyribosomes; these proteins include glycolytic enzymes, steroid hormone receptors and intermediate filament proteins. Thus, the eukaryotic polyribosome is an element of the cytoplasmic labile structure on which various proteins can be compartmentalized and, consequently, different biochemical pathways can be integrated.
Collapse
|
42
|
Abstract
The two partial reactions of elongation factor G dependent translocation, the release of deacylated tRNA from the P site and the displacement of peptidyl tRNA from the A to the P site, have been studied with the stopped-flow technique. The experiments were performed with poly(U)-programmed ribosomes from Escherichia coli carrying deacylated tRNAPhe in the P site and N-AcPhe-tRNAPhe in the A site in the presence of GTP. The kinetics of the reaction were followed by monitoring either the intensity or the polarization of the fluorescence of both wybutine and proflavine located in the anticodon loop or of proflavine located in the D loop of yeast tRNAPhe or N-AcPhe-tRNAPhe. Both displacement and release fluorescence changes could be described by three exponentials, exhibiting apparent first-order rate-constants (20 degrees C) of 2 to 5 s-1 (15 s-1, 35 degrees C), 0.1 to 0.3 s-1, and 0.01 to 0.02 s-1, measured with a saturating concentration of elongation factor G (1 microM). The activation energy for the fast process of both reactions was found to be 70 kJ/mol (17 kcal/mol), while the intermediate process exhibits an activation energy of 30 kJ/mol (7 kcal/mol). The fast step is assigned to the displacement of the N-AcPhe-tRNAPhe from the A to the P site, and to the release of the tRNAPhe from the P site. The reactions take place simultaneously to form an intermediate post-translocation complex. The latter, in the intermediate step, rearranges to form a post-translocation complex carrying the deacylated tRNAPhe in an exit site and N-AcPhe-tRNAPhe in the P site, both in their equilibrium states. In parallel, or subsequently, the deacylated tRNAPhe spontaneously dissociates from the ribosome, thus completing the translocation process. The slow process has not been assigned.
Collapse
|
43
|
Affiliation(s)
- R Grantham
- Institut d'Evolution Moléculaire, Université Claude Bernard Lyon I, 69612 Villeurbanne cedex, France
| | | |
Collapse
|
44
|
Varenne S, Lazdunski C. Effect of distribution of unfavourable codons on the maximum rate of gene expression by an heterologous organism. J Theor Biol 1986; 120:99-110. [PMID: 3528671 DOI: 10.1016/s0022-5193(86)80020-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have analysed theoretically the effect of the relative position of unfavourable codons on the maximum level of synthesis of foreign proteins in E. coli. We predict that the occurrence of such codons scattered in the corresponding genes has little effect. In contrast, clustering (in our terminology indicating directly adjacent codons) of unfavourable codons is predicted to dramatically reduce the maximum level of protein synthesis. The context effect would explain the reduction of expression level for a chloramphenicol acetyl transferase gene modified by Robinson et al. (1984), which contains 4 contiguous unfavourable codons. As an example, we predict that due to the different downstream contexts of unfavourable codons in the alpha 1 and beta interferon genes, the maximum level of synthesis in E. coli for these proteins will be different.
Collapse
|
45
|
Shpaer EG. Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 1986; 188:555-64. [PMID: 3525848 DOI: 10.1016/s0022-2836(86)80005-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The constraints on nucleotide sequences of highly and weakly expressed genes from Escherichia coli have been analysed and compared. Differences in synonymous codon spectra in highly and weakly expressed genes lead to different frequencies of nucleotides (in the first and third codon positions) and dinucleotides in the two groups of genes. It has been found that the choice of synonymous codons in highly expressed genes depends on the nucleotides adjacent to the codon. For example, lysine is preferably encoded by the AAA codon if guanosine is 3' to the lysine codon (AAA-G, P less than 10(-9)). And, on the contrary, AAG is used more often than AAA (P less than 0.001) if cytidine is 3' adjacent to lysine. Guanosine occurs more frequently than adenosine 5' to all the lysine codons (AAR, P less than 10(-5), i.e. NNG codons are preferred over the synonymous NNA codons 5' to the positions of lysine in the genes. The context effect was observed in nonsense and missense suppression experiments. Therefore, a hypothesis has been suggested that the efficiency of translation of some codons (for which the constraints on the adjacent nucleotides were found) can be modulated by the codon context. The rules for preferable synonymous codon choice in highly expressed genes depending on the nucleotides surrounding the codon are presented. These rules can be used in the chemical synthesis of genes designed for expression in E. coli.
Collapse
|
46
|
Abstract
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.
Collapse
|
47
|
|
48
|
Brune M, Schumann R, Wittinghofer F. Cloning and sequencing of the adenylate kinase gene (adk) of Escherichia coli. Nucleic Acids Res 1985; 13:7139-51. [PMID: 2997739 PMCID: PMC322029 DOI: 10.1093/nar/13.19.7139] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adenylate kinase, the product of the adk locus in Escherichia coli K12, catalyzes the conversion of AMP and ATP to two molecules of ADP. The gene has been cloned by complementation of an adk temperature sensitive mutation. The DNA sequence of the complete coding region and of 5'- and 3'-untranslated regions were determined. The resulting protein sequence was found to contain several regions of high homology with cytosolic adenylate kinase of pig muscle (AK1), whose three-dimensional structure has been determined. The most significant of the amino acid exchanges is the replacement of histidine 36 with glutamine. This residue is believed to play a role in catalysis through metal ion binding. The codon usage pattern and the determination of adenylate kinase molecules per cell shows that the enzyme is one of the more abundant soluble proteins of the bacterial cells.
Collapse
|
49
|
Springer M, Plumbridge JA, Butler JS, Graffe M, Dondon J, Mayaux JF, Fayat G, Lestienne P, Blanquet S, Grunberg-Manago M. Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. J Mol Biol 1985; 185:93-104. [PMID: 3930755 DOI: 10.1016/0022-2836(85)90185-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The regulation of the expression of thrS, the structural gene for threonyl-tRNA synthetase, was studied using several thrS-lac fusions cloned in lambda and integrated as single copies at att lambda. It is first shown that the level of beta-galactosidase synthesized from a thrS-lac protein fusion is increased when the chromosomal copy of thrS is mutated. It is also shown that the level of beta-galactosidase synthesized from the same protein fusion is decreased if wild-type threonyl-tRNA synthetase is overproduced from a thrS-carrying plasmid. These results strongly indicate that threonyl-tRNA synthetase controls the expression of its own gene. Consistent with this hypothesis it is shown that some thrS mutants overproduce a modified form of threonyl-tRNA synthetase. When the thrS-lac protein fusion is replaced by several types of thrS-lac operon fusions no effect of the chromosomal thrS allele on beta-galactosidase synthesis is observed. It is also shown that beta-galactosidase synthesis from a promoter-proximal thrS-lac operon fusion is not repressed by threonyl-tRNA synthetase overproduction. The fact that regulation is seen with a thrS-lac protein fusion and not with operon fusions indicates that thrS expression is autoregulated at the translational level. This is confirmed by hybridization experiments which show that under conditions where beta-galactosidase synthesis from a thrS-lac protein fusion is derepressed three- to fivefold, lac messenger RNA is only slightly increased.
Collapse
|
50
|
Blomberg C. Optimization of error-correction processes with respect to time. Comparison to free energy aspects. J Theor Biol 1985; 115:241-68. [PMID: 4033165 DOI: 10.1016/s0022-5193(85)80099-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Time aspects of selection processes with the possibility of error correction through proofreading branches are studied by mathematical modelling of the kinetics of the reaction network. The methods are similar to those previously developed for free energy aspects. The minimum time delay that is necessary for achieving a certain accuracy level can then be calculated. The main difference to previous results lies in the initial association-dissociation step. In the free energy picture, this shall be essentially equilibrated, but that would yield a too large time delay in the time picture. Characteristic features that are indicative for the optimization strategy of the cell are discussed.
Collapse
|