1
|
Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 2022; 86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
2
|
Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V, Garab G. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci Rep 2020; 10:11959. [PMID: 32686730 PMCID: PMC7371714 DOI: 10.1038/s41598-020-68854-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content—yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Irena Kurasová
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Karlický
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Uroš Javornik
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia
| | - Nia Z Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sashka B Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Center of Excellence, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Bettina Ughy
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | - Vladimír Špunda
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| | - Győző Garab
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
3
|
Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc Natl Acad Sci U S A 2012; 109:11043-8. [PMID: 22711813 DOI: 10.1073/pnas.1205960109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A potassium channel (SynK) of the cyanobacterium Synechocystis sp. PCC 6803, a photoheterotrophic model organism for the study of photosynthesis, has been recently identified and demonstrated to function as a potassium selective channel when expressed in a heterologous system and to be located predominantly to the thylakoid membrane in cyanobacteria. To study its physiological role, a SynK-less knockout mutant was generated and characterized. Fluorimetric experiments indicated that SynK-less cyanobacteria cannot build up a proton gradient as efficiently as WT organisms, suggesting that SynK might be involved in the regulation of the electric component of the proton motive force. Accordingly, measurements of flash-induced cytochrome b(6)f turnover and respiration pointed to a reduced generation of ΔpH and to an altered linear electron transport in mutant cells. The lack of the channel did not cause an altered membrane organization, but decreased growth and modified the photosystem II/photosystem I ratio at high light intensities because of enhanced photosensitivity. These data shed light on the function of a prokaryotic potassium channel and reports evidence, by means of a genetic approach, on the requirement of a thylakoid ion channel for optimal photosynthesis.
Collapse
|
4
|
Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H. Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:997-1003. [PMID: 18230332 DOI: 10.1016/j.bbamem.2008.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/07/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.
Collapse
Affiliation(s)
- Sashka B Krumova
- Wageningen University, Laboratory of Biophysics, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Lambrev PH, Tsonev T, Velikova V, Georgieva K, Lambreva MD, Yordanov I, Kovács L, Garab G. Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. PHOTOSYNTHESIS RESEARCH 2007; 94:321-32. [PMID: 17786581 DOI: 10.1007/s11120-007-9216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/19/2007] [Indexed: 05/08/2023]
Abstract
The kinetics of non-photochemical quenching (NPQ) of chlorophyll fluorescence was studied in pea leaves at different temperatures between 5 and 25 degrees C and during rapid jumps of the leaf temperature. At 5 degrees C, NPQ relaxed very slowly in the dark and was sustained for up to 30 min. This was independent of the temperature at which quenching was induced. Upon raising the temperature to 25 degrees C, the quenched state relaxed within 1 min, characteristic for qE, the energy-dependent component of NPQ. Measurements of the membrane permeability (delta A515) in dark-adapted and preilluminated leaves and NPQ in the presence of dithiothreitol strongly suggest that the effect of low temperature on NPQ was not because of limitation by the lumenal pH or the de-epoxidation state of the xanthophylls. These data are consistent with the notion that the transition from the quenched to the unquenched state and vice versa involves a structural reorganization in the photosynthetic apparatus. An eight-state reaction scheme for NPQ is proposed, extending the model of Horton and co-workers (FEBS Lett 579:4201-4206, 2005), and a hypothesis is put forward concerning the nature of conformational changes associated with qE.
Collapse
Affiliation(s)
- Petar H Lambrev
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6726, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tóth SZ, Schansker G, Kissimon J, Kovács L, Garab G, Strasser RJ. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). JOURNAL OF PLANT PHYSIOLOGY 2005; 162:181-94. [PMID: 15779828 DOI: 10.1016/j.jplph.2004.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaves of 7-day-old barley seedlings were subjected to heat pulses at 50 degrees C for 20 or 40s to inhibit partially or fully the oxygen evolution without inducing visible symptoms. By means of biophysical techniques, we investigated the time course and mechanism of photosystem II (PSII) recovery. After the heat treatment, the samples were characterized by typical heat stress symptoms: loss of oxygen evolution activity, strong decrease of Fv/Fm, induction of the K-step in the fluorescence induction transient, emergence of the AT-thermoluminescence-band and a dramatic increase in membrane permeability. In the first 4h in the light following the heat pulse, the AT-band and the K-step disappeared in parallel, indicating the loss of this restricted activity of PSII. This phase was followed by a recovery period, during which PSII-activity was gradually restored in the light. In darkness, no recovery, except for the membrane permeability, was observed. A model is presented that accounts for (i) the damage induced by the heat pulse on the membrane architecture and on the PSII donor side, (ii) the light-dependent removal of the impaired reaction centers from the disorganized membrane, and (iii) the subsequent light-independent restoration of the membrane permeability and the de novo synthesis of the PSII reaction centers in the light.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Laboratory of Bioenergetics, University of Geneva, Chemin des Embrouchis 10, CH-1254 Jussy, Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
Soriano GM, Cramer WA. Deuterium kinetic isotope effects in the p-side pathway for quinol oxidation by the cytochrome b(6)f complex. Biochemistry 2001; 40:15109-16. [PMID: 11735393 DOI: 10.1021/bi011465k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plastoquinol oxidation and proton transfer by the cytochrome b(6) f complex on the lumen side of the chloroplast thylakoid membrane are mediated by high and low potential electron transport chains. The rate constant for reduction, k(bred), of cytochrome b(6) in the low potential chain at ambient pH 7.5-8 was twice that, k(fred), of cytochrome f in the high potential chain, as previously reported. k(bred) and k(fred) have a similar pH dependence in the presence of nigericin/nonactin, decreasing by factors of 2.5 and 4, respectively, from pH 8 to an ambient pH = 6, close to the lumen pH under conditions of steady-state photosynthesis. A substantial kinetic isotope effect, k(H2O)/k(D2O), was found over the pH range 6-8 for the reduction of cytochromes b(6) and f, and for the electrochromic band shift associated with charge transfer across the b(6)f complex, showing that isotope exchange affects the pK values linked to rate-limiting steps of proton transfer. The kinetic isotope effect, k(bred)(H2O)/k(bred) (D2O) approximately 3, for reduction of cytochrome b in the low potential chain was approximately constant from pH 6-8. However, the isotope effect for reduction of cytochrome f in the high potential chain undergoes a pH-dependent transition below pH 6.5 and increased 2-fold in the physiological region of the lumen pH, pH 5.7-6.3, where k(fred)(H2O)/k(fred)(D2O) approximately 4. It is proposed that a rate-limiting step for proton transfer in the high potential chain resides in the conserved, buried, and extended water chain of cytochrome f, which provides the exit port for transfer of the second proton derived from p-side quinol oxidation and a "dielectric well" for charge balance.
Collapse
Affiliation(s)
- G M Soriano
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
8
|
|
9
|
Garab G, Burgos A, Zimányi L, Faludi-Dániel Á. Effect of CO2
on the energization of thylakoids in leaves of higher plants. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80175-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ponamarev MV, Cramer WA. Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6. Biochemistry 1998; 37:17199-208. [PMID: 9860833 DOI: 10.1021/bi981814j] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1.96 A structure of turnip cytochrome f revealed a linear internal chain of H2O molecules with the oxygen atoms of the chain having occupancies and "B" factors comparable to those of neighboring atoms [Martinez et al. (1996) Protein Sci. 5, 1081-1092. ]. Four waters extend 11 A from the heme toward Lys66 on the cytochrome surface. All residues that contribute an atom to the 15 H-bonds of five internal H2O molecules are essentially conserved in 23 cytochrome sequences. With only Gln and Asn side chains involved in H-bonding, the water chain resembles a "proton wire". The function of the conserved H2O chain was tested through site-directed mutagenesis of these Asn and Gln residues. Four of the five conserved Asn/Gln residues were changed in six mutants generated in the green alga, Chlamydomonas reinhardtii. Except for the N168F mutant, all grew photosynthetically. Although the rates of oxidation of cyt f oxidation and of reduction of cyt b6 (5-6 ms in the wild type) were not significantly affected, the rates of cyt f reduction and generation of the slow electrochromic band shift (Deltapsis) were markedly decreased, the half-times increasing to as much as 38 and 18 ms, respectively. Thus, in these mutants, reduction of cyt b6 reduction clearly precedes that of cyt f. Retardation of Deltapsis in the absence of an observable change in the rate of cyt b6 reduction implied that the rate of H+ translocation decreased in the mutants, and electron transfer was concomitantly retarded, most likely between the ISP and cyt f. The following was concluded: (i) proton and electron transfer are coupled in reduction of cyt f, and the cyt f water chain functions in H+ transfer; (ii) reduction of the high- and low-potential chains in the b6f complex is not concerted in the water chain mutants; and (iii) quinol deprotonation and electron transfer from reduced quinone are initiated by an early event, probably the movement of the ISP triggered by oxidation of cyt f.
Collapse
Affiliation(s)
- M V Ponamarev
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
11
|
Garab G, Farineau J, Hervo G. Dependence of energization of thylakoids on frequency of exciting flashes in intact chloroplasts. PHOTOSYNTHESIS RESEARCH 1987; 11:15-27. [PMID: 24435459 DOI: 10.1007/bf00117670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/1985] [Revised: 11/23/1985] [Accepted: 11/26/1985] [Indexed: 06/03/2023]
Abstract
We investigated the frequency-dependence of the flash-induced electrochromic absorbance change, ΔA515, and of the pH-indicating absorbance change of neutral red in isolated intact chloroplasts. The energization pattern of thylakoids depended strongly on the frequency (f) of the exciting flashes, tested between 0.05 and 2 s(-1). When the frequency was increased from 0.1 to 1 s(-1) the total initial change and the slow rise of ΔA515 decreased by about 30% and 70%, respectively, and both the slow rise and decay were considerably accelerated. These changes were fully reversible, even after prolonged excitation at 1 s(-1), if the frequency was decreased again to 0.1 s(-1). Accumulation of an appreciable transmembrane electric field strength could not be detected in any of our experiments, at high frequency, since the decay of ΔA515 was considerably accelerated when the frequency was increased. In contrast, ΔpH significantly increased at higher frequencies of the exciting flashes. In the steady-state (after about 100 flashes) ΔpH was about 0.5-0.8 pH unit higher than in the dark or at low frequencies. In the presence of nigericin or dithionite, both of which prevented accumulation of protons in the lumen, the total initial change in ΔA515 at f=1 s(-1) relative to that at f=0.1 s(-1) decreased to a similar extent as in the control. The proportion of the slow rise relative to the initial amplitude, however, did not decrease. Our data support the suggestion that ΔpH controls the amplitude of the slow rise of ΔA515. However, contrary to a previous statement (B. Bouges-Bouquet (1981) Biochim. Biophys. Acta 535, 327-340), we show that the ΔpH effect cannot be accounted for by variation of the rate of this kinetic component of ΔA515.
Collapse
Affiliation(s)
- G Garab
- Institute of Plant Physiology, Biology Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, (Hungary)
| | | | | |
Collapse
|
12
|
Kinetics of the flash-induced electrochromic absorbance change in the presence of background illumination. Turnover rate of the electron transport. II. Higher plant leaves. J Bioenerg Biomembr 1985. [DOI: 10.1007/bf00743109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Kinetics of the flash-induced electrochromic absorbance change in the presence of background illumination. Turnover rate of the electron transport. I. Isolated intact chloroplasts. J Bioenerg Biomembr 1985. [DOI: 10.1007/bf00743108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Girvin ME, Cramer WA. A redox study of the electron transport pathway responsible for generation of the slow electrochromic phase in chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 767:29-38. [PMID: 6487614 DOI: 10.1016/0005-2728(84)90076-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The amplitude of the slow phase of the electrochromic bandshift and the dark redox state of cytochrome b6, as well as its flash-induced turnover, have been measured as a function of ambient redox potential between +200 and -200 mV. Formation of a quinol-like donor with an Em,7 = +100 +/- 10 mV is required for generation of the slow phase. 80-100% of the amplitude of this signal with a t 1/2 = 3-4 ms is observed at -200 mV where cytochrome b6 was almost fully reduced (Em,7 of dark and flash-induced photoreduction was -30 mV and -75 mV, respectively). The change in the photoreduction of cytochrome b6 above 0 mV had an Em,7 of +50 mV, about 50 mV more negative than the midpoint at this pH for the onset of the slow electrochromic change. At potentials below -140 mV the amplitude of b6 photoreduction becomes small or negligible. The nature of the cytochrome b6 photoresponse is changed at potentials below -140 mV from a net photoreduction with a t1/2 = approximately less than 1 ms to a photooxidation with a t1/2 = 15-20 ms that is substantially slower than the electrochromic band-shift with a t1/2 = 3-4 ms. It is concluded that the slow electrochromic phase probably does not arise from a mechanism involving a turnover of cytochrome b6. From consideration of the possible flash-induced electron-transfer steps and alternative mechanisms for generation of the slow phase, it is suggested that it may arise from a redox-linked H+ pump involving the high potential iron-sulfur protein.
Collapse
|
15
|
Peters FA, Van Der Pal RH, Peters RL, Vredenberg WJ, Kraayenhof R. Studies on well-coupled Photosystem-I-enriched subchloroplast vesicles. Discrimination of flash-induced fast and slow electric potential components. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90229-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Farineau J, Bottin H, Garab G. Effect of dibromothymoquinone (DBMIB) on reduction rates of Photosystem I donors in intact chloroplasts. Biochem Biophys Res Commun 1984; 120:721-5. [PMID: 6375660 DOI: 10.1016/s0006-291x(84)80166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dual effect of dibromothymoquinone ( DBMIB ), inhibitor and reducing agent at the donor side of Photosystem I, was investigated in isolated intact chloroplasts by flash-induced absorbance changes at 820 and 515 nm. We show that in the absence of other electron donors, rereduction of P700+ by DBMIB proceeds at a very low rate (half-time of approximately 10 s) Dual effect of DBMIB explains that the initial rise of electrochromic absorbance change induced by repetitive flashes is usually not diminished while the slow rise is fully inhibited by this compound.
Collapse
|
17
|
Crowther D, Leegood RC, Walker DA, Hind G. Energetics of photosynthesis in Zea mays. II. Studies of the flash-induced electrochromic shift and fluorescence induction in mesophyll chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
|
19
|
de Kouchkovsky Y, Haraux F. 2H2O effect on the electron and proton flow in isolated chloroplasts. An indication for lateral heterogeneity of membrane pH. Biochem Biophys Res Commun 1981; 99:205-12. [PMID: 6263269 DOI: 10.1016/0006-291x(81)91733-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|