Spruijt RB, Böhmer MR, Wilschut J, Hemminga MA. Interaction of non-enveloped plant viruses and their viral coat proteins with phospholipid vesicles.
BIOCHIMICA ET BIOPHYSICA ACTA 1991;
1065:217-24. [PMID:
2059653 DOI:
10.1016/0005-2736(91)90233-x]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interaction of the non-enveloped plant viruses TMV (rod-shaped) and CCMV (spherical) and of their coat proteins in several well-defined aggregation states, with artificial membranes was investigated to study the early stages of the cellular infection process. Information about the separate steps in the interaction mechanisms was obtained by employing three assays, performed as a function of vesicle size, net membrane charge, pH and ionic strength. The assays allow to discriminate between aggregation of vesicles (turbidity assay) and membrane destabilization (vesicle leakage assay and lipid mixing assay). The aggregation of the vesicles is a result of electrostatic interactions between the viral material and vesicles surface (cross-linking), while the destabilization of the membrane is a result of penetration or bilayer disruption by hydrophobic protein domains. TMV virions and its coat protein, and CCMV virions, due to their net negative charge, predominantly interact with positively charged membranes. The coat protein of CCMV was found to interact with negatively charged membranes, an interaction that can be assigned to its basical N-terminal sequence. Changing the aggregational state of the viral coat proteins yielded most significant interactions in case of TMV coat protein aggregated in the disk form and CCMV coat protein aggregated in empty capsids with oppositely charged membranes. These protein aggregates are found to be the best compromise between efficiency (capacity of the protein to bridge vesicles and destabilize their membranes) and concentration of protein aggregates. The results are discussed with respect to previously proposed biological models of the early stages of plant virus infection.
Collapse