1
|
Akanuma G. Diverse relationships between metal ions and the ribosome. Biosci Biotechnol Biochem 2021; 85:1582-1593. [PMID: 33877305 DOI: 10.1093/bbb/zbab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The ribosome requires metal ions for structural stability and translational activity. These metal ions are important for stabilizing the secondary structure of ribosomal RNA, binding of ribosomal proteins to the ribosome, and for interaction of ribosomal subunits. In this review, various relationships between ribosomes and metal ions, especially Mg2+ and Zn2+, are presented. Mg2+ regulates gene expression by modulating the translational stability and synthesis of ribosomes, which in turn contribute to the cellular homeostasis of Mg2+. In addition, Mg2+ can partly complement the function of ribosomal proteins. Conversely, a reduction in the cellular concentration of Zn2+ induces replacement of ribosomal proteins, which mobilizes free-Zn2+ in the cell and represses translation activity. Evolutional relationships between these metal ions and the ribosome are also discussed.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.,Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
2
|
Graifer D, Karpova G. Interaction of tRNA with eukaryotic ribosome. Int J Mol Sci 2015; 16:7173-94. [PMID: 25830484 PMCID: PMC4425011 DOI: 10.3390/ijms16047173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, ul. Pirogova, 2, 630090 Novosibirsk, Russia.
| |
Collapse
|
3
|
Defect in the formation of 70S ribosomes caused by lack of ribosomal protein L34 can be suppressed by magnesium. J Bacteriol 2014; 196:3820-30. [PMID: 25182490 DOI: 10.1128/jb.01896-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To elucidate the biological functions of the ribosomal protein L34, which is encoded by the rpmH gene, the rpmH deletion mutant of Bacillus subtilis and two suppressor mutants were characterized. Although the ΔrpmH mutant exhibited a severe slow-growth phenotype, additional mutations in the yhdP or mgtE gene restored the growth rate of the ΔrpmH strain. Either the disruption of yhdP, which is thought to be involved in the efflux of Mg(2+), or overexpression of mgtE, which plays a major role in the import of Mg(2+), could suppress defects in both the formation of the 70S ribosome and growth caused by the absence of L34. Interestingly, the Mg(2+) content was lower in the ΔrpmH cells than in the wild type, and the Mg(2+) content in the ΔrpmH cells was restored by either the disruption of yhdP or overexpression of mgtE. In vitro experiments on subunit association demonstrated that 50S subunits that lacked L34 could form 70S ribosomes only at a high concentration of Mg(2+). These results showed that L34 is required for efficient 70S ribosome formation and that L34 function can be restored partially by Mg(2+). In addition, the Mg(2+) content was consistently lower in mutants that contained significantly reduced amounts of the 70S ribosome, such as the ΔrplA (L1) and ΔrplW (L23) strains and mutant strains with a reduced number of copies of the rrn operon. Thus, the results indicated that the cellular Mg(2+) content is influenced by the amount of 70S ribosomes.
Collapse
|
4
|
Konevega AL, Fischer N, Semenkov YP, Stark H, Wintermeyer W, Rodnina MV. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat Struct Mol Biol 2007; 14:318-24. [PMID: 17369838 DOI: 10.1038/nsmb1221] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/26/2007] [Indexed: 01/07/2023]
Abstract
During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.
Collapse
Affiliation(s)
- Andrey L Konevega
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Konevega AL, Soboleva NG, Makhno VI, Peshekhonov AV, Katunin VI. Effect of modification of tRNA nucleotide 37 on the tRNA interaction with the A and P sites of the Escherichia coli 70S ribosome. Mol Biol 2006. [DOI: 10.1134/s0026893306040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W, Rodnina MV, Katunin VI. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA (NEW YORK, N.Y.) 2004; 10:90-101. [PMID: 14681588 PMCID: PMC1370521 DOI: 10.1261/rna.5142404] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Accepted: 09/22/2003] [Indexed: 05/23/2023]
Abstract
The anticodon loop of tRNA contains a number of conserved or semiconserved nucleotides. In most tRNAs, a highly modified purine is found at position 37 immediately 3' to the anticodon. Here, we examined the role of the base at position 37 for tRNA(Phe) binding to the A site of Escherichia coli ribosomes. Affinities and rate constants of A-site binding of native yeast peptidyl-tRNA(Phe) with hypermodified G (wybutine), or of unmodified peptidyl-tRNA(Phe) transcripts with G, A, C, or U, at position 37 were measured. The data indicate that purines stabilize binding due to stronger stacking and additional interactions with the ribosome mediated by Mg(2+) ions. Paromomycin, an antibiotic that binds to 16S rRNA in the decoding center, greatly stabilized tRNAs in the A site and abolished the Mg(2+)-dependence of binding. Comparison of binding enthalpies and entropies suggests that hypermodification of the base at position 37 does not affect stacking in the codon-anticodon complex, but rather decreases the entropic penalty for A-site binding. Substitution of purines with pyrimidines at position 37 increases the rates of tRNA binding to and dissociation from the A site. The data suggest that initial binding of tRNA to the A site is followed by a rate-limiting rearrangement of the anticodon loop or the ribosome decoding center that is favored by purines at position 37 and involves stronger stacking, additional Mg(2+) binding, and interactions with 16S rRNA.
Collapse
Affiliation(s)
- Andrey L Konevega
- Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina, Russia
| | | | | | | | | | | | | |
Collapse
|
7
|
Kirillov SV, Wower J, Hixson SS, Zimmermann RA. Transit of tRNA through the Escherichia coli ribosome: cross-linking of the 3' end of tRNA to ribosomal proteins at the P and E sites. FEBS Lett 2002; 514:60-6. [PMID: 11904182 DOI: 10.1016/s0014-5793(02)02302-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.
Collapse
Affiliation(s)
- Stanislav V Kirillov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
8
|
Wower J, Kirillov SV, Wower IK, Guven S, Hixson SS, Zimmermann RA. Transit of tRNA through the Escherichia coli ribosome. Cross-linking of the 3' end of tRNA to specific nucleotides of the 23 S ribosomal RNA at the A, P, and E sites. J Biol Chem 2000; 275:37887-94. [PMID: 10961994 DOI: 10.1074/jbc.m005031200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.
Collapse
Affiliation(s)
- J Wower
- Department of Animal and Dairy Sciences, Program in Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849-5415, USA
| | | | | | | | | | | |
Collapse
|
9
|
Triana-Alonso FJ, Spahn CM, Burkhardt N, Röhrdanz B, Nierhaus KH. Experimental prerequisites for determination of tRNA binding to ribosomes from Escherichia coli. Methods Enzymol 2000; 317:261-76. [PMID: 10829285 DOI: 10.1016/s0076-6879(00)17019-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- F J Triana-Alonso
- Centro de Investigaciones Biomédicas, Universidad de Carabobo, LaMorita, Maracay, Venezuela
| | | | | | | | | |
Collapse
|
10
|
Kirillov S, Porse BT, Vester B, Woolley P, Garrett RA. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Lett 1997; 406:223-33. [PMID: 9136892 DOI: 10.1016/s0014-5793(97)00261-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Determining how antibiotics inhibit ribosomal activity requires a detailed understanding of the interactions and relative movement of tRNA, mRNA and the ribosome. Recent models for the formation of hybrid tRNA binding sites during the elongation cycle have provided a basis for re-evaluating earlier experimental data and, especially, those relevant to substrate movements through the peptidyl transferase centre. With the exception of deacylated tRNA, which binds at the E-site, ribosomal interactions of the 3'-ends of the tRNA substrates generate only a small part of the total free energy of tRNA-ribosome binding. Nevertheless, these relatively weak interactions determine the unidirectional movement of tRNAs through the ribosome and, moreover, they appear to be particularly susceptible to perturbation by antibiotics. Here we summarise current ideas relating particularly to the movement of the 3'-ends of tRNA through the ribosome and consider possible inhibitory mechanisms of the peptidyl transferase antibiotics.
Collapse
Affiliation(s)
- S Kirillov
- RNA Regulation Centre, Institute of Molecular Biology, Copenhagen University, Denmark
| | | | | | | | | |
Collapse
|
11
|
Rodnina MV, Fricke R, Wintermeyer W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 1994; 33:12267-75. [PMID: 7918447 DOI: 10.1021/bi00206a033] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conformational transitions of Phe-tRNA(Phe) that take place during elongation factor Tu (EF-Tu)-dependent binding to the A site of Escherichia coli ribosomes were followed by transient fluorescence measurements. The fluorescence signal of proflavin replacing dihydrouracil at position 16 or 17 in yeast tRNA(Phe) was utilized to monitor changes of the conformation of the D loop. The ternary complex EF-Tu.GTP.Phe-TRNA(Phe)(Pf16/17) was purified by gel filtration. Upon binding of the complex to the A site of poly(U)-programmed, P-site-blocked ribosomes, the fluorescence changes in several steps. First, the rapid formation of an initial complex gives rise to a small fluorescence increase. Subsequent codon-anticodon recognition leads to a conformational rearrangement of the D loop of the tRNA that is reflected in a major fluorescence increase. Fluorescence-quenching data indicate an unfolding of the D loop in this state. The latter conformational state is short-lived, and the aminoacyl-tRNA refolds during the following rearrangement that occurs after GTP hydrolysis and accompanies the release of the aminoacyl-tRNA from EF-Tu.GDP and/or its accommodation in the A site. Further experiments show that the status of the P site influences the binding to the A site in that the two rearrangement steps are slowed down when the P site is unoccupied and even more so when it is occupied with the near-cognate tRNA(Leu2). In contrast, the occupancy of the E site has no influence on A-site binding, and vice versa, thus excluding any coupling between the two sites.
Collapse
Affiliation(s)
- M V Rodnina
- Institut für Molekularbiologie, Universität Witten/Herdecke, Germany
| | | | | |
Collapse
|
12
|
Nilsson L, Nygård O. Reduced puromycin sensitivity of translocated polysomes after the addition of elongation factor 2 and non-hydrolysable GTP analogues. FEBS Lett 1992; 309:89-91. [PMID: 1511751 DOI: 10.1016/0014-5793(92)80746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Treatment of reticulocyte polysomes with elongation factor eEF-2 and GTP led to an increased sensitivity of peptidyl-tRNA for puromycin as a result of the translocation from the ribosomal A-site to the P-site. Upon addition of an excess of the non-hydrolysable GTP analogue, GuoPP[CH2]P, the puromycin sensitivity decreased rapidly. The decrease in sensitivity required high concentrations of eEF-2 with half maximal effect at an eEF-2 concentration of around 1 microM. The data suggest either that peptidyl-tRNA had re-translocated back to the A-site due to the higher affinity of eEF-2 for the pre-translocation than for the post-translocation ribosome, or that the eEF-2-GuoPP[CH2]P complex blocks the peptidyl-transferase activity.
Collapse
Affiliation(s)
- L Nilsson
- Department of Cell Biology, Arrhenius Laboratories E5, Stockholm University, Sweden
| | | |
Collapse
|
13
|
Tujebajeva RM, Graifer DM, Matasova NB, Fedorova OS, Odintsov VB, Ajtkhozhina NA, Karpova GG. Selective inhibition of the polypeptide chain elongation in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1129:177-82. [PMID: 1730056 DOI: 10.1016/0167-4781(92)90484-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of Cephalotaxus alkaloids--homoharringtonine and cephalotaxine--on translation in a cell-free system from rabbit reticulocytes and on phenylalanine polymerisation by human ribosomes was studied. The effect of the alkaloids on the nonenzymatic and the eEF-1-dependent Phe-tRNA(Phe) binding to poly(U)-programmed 80S ribosomes, diphenylalanine synthesis accompanying nonenzymatic Phe-tRNA(Phe) binding and acetylphenylalanyl-puromycin formation was examined. Homoharringtonine was shown to inhibit the formation of diphenylalanine and acetylphenylalanyl-puromycin catalysed by human and rat liver ribosomes, but was inactive as an inhibitor on the E. coli elongation system. Neither nonenzymatic nor enzymatic Phe-tRNA(Phe) binding was noticeably affected by the alkaloid. It has been proposed that the site of homoharringtonine binding to 80S ribosomes should overlap or coincide with the acceptor site of the ribosomal peptidyl transferase centre. The association constant of homoharringtonine for 80S human ribosomes was estimated to be (2.57 +/- 0.33).10(7) M-1 in the presence of puromycin. Cephalotaxine did not exert a significant influence on the polypeptide chain elongation.
Collapse
Affiliation(s)
- R M Tujebajeva
- M. A. Ajtkhozhin Institute of Molecular Biology and Biochemistry, Kazakh Academy of Sciences, Alma-Ata, U.S.S.R
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
During the last decade, a new model for the ribosomal elongation cycle has emerged. It is based on the finding that eubacterial ribosomes possess 3 tRNA binding sites. More recently, this has been confirmed for archaebacterial and eukaryotic ribosomes as well, and thus appears to be a universal feature of the protein synthetic machinery. Ribosomes from organisms of all 3 kingdoms harbor, in addition to the classical P and A sites, an E site (E for exit), into which deacylated tRNA is displaced during translocation, and from which it is expelled by the binding of an aminoacyl-tRNA to the A site at the beginning of the subsequent elongation round. The main features of the allosteric 3-site model of ribosomal elongation are the following: first, the third tRNA binding site is located 'upstream' adjacent to the P site with respect to the messenger, ie on the 5'-side of the P site. Second, during translocation, deacylated tRNA does not leave the ribosome from the P site, but co-translocates from the P site to the E site--when peptidyl-tRNA translocates from the A site to the P site. Third, deacylated tRNA is tightly bound to the E site in the post-translocational state, where it undergoes codon--anticodon interaction. Fourth, the elongating ribosome oscillates between 2 main conformations: (i), the pre-translocational conformer, where aminoacyl-tRNA (or peptidyl-tRNA) and peptidyl-tRNA (or deacylated tRNA) are firmly bound to the A and P sites, respectively; and (ii), the post-translocational conformer, where peptidyl-tRNA and deacylated tRNA are firmly bound to the P and E sites, respectively. The transition between the 2 states is regulated in an allosteric manner via negative cooperatively. It is modulated in a symmetrical fashion by the 2 elongation factors Tu and G. An elongating ribosome always maintains 2 high-affinity tRNA binding sites with 2 adjacent codon--anticodon interactions. The allosteric transition from the post- to the pre-translocational state is involved in the accuracy of aminoacyl-tRNA selection, and the maintenance of 2 codon--anticodon interactions helps to keep the messenger in frame during translation.
Collapse
Affiliation(s)
- H J Rheinberger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
15
|
Graifer DM, Fedorova OS, Karpova GG. Interaction of puromycin with acceptor site of human placenta 80 S ribosomes. FEBS Lett 1990; 277:4-6. [PMID: 2269367 DOI: 10.1016/0014-5793(90)80795-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex N-AcPhe-tRNA(Phe).poly(U).80 S ribosome from human placenta was treated with puromycin taken in various concentrations. Based on the kinetic data of N-acetylphenylalanyl-puromycin formation, the association constant of puromycin with the acceptor site of the ribosome was estimated to be (3.96 +/- 0.84) x 10(4) M-1 at 37 degrees C.
Collapse
Affiliation(s)
- D M Graifer
- Institute of Bioorganic Chemistry, Siberian Division of the USSR Academy of Sciences, Novosibirsk
| | | | | |
Collapse
|
16
|
Rheinberger HJ, Nierhaus KH. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:643-50. [PMID: 2249685 DOI: 10.1111/j.1432-1033.1990.tb19382.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(U)-programmed 70S ribosomes can be shown to be 80% to 100% active in binding the peptidyl-tRNA analogue AcPhe-tRNA to their A or P sites, respectively. Despite this fact, only a fraction of such ribosomes primed with AcPhe-tRNA participate in poly(U)-directed poly(Phe) synthesis (up to 65%) at 14 mM Mg2+ and 160 mM NH4+. Here it is demonstrated that the apparently 'inactive' ribosomes (greater than or equal to 35%) are able to participate in peptide-bond formation, but lose their nascent peptidyl-tRNA at the stage of Ac(Phe)n-tRNA, with n greater than or equal to 2. The relative loss of early peptidyl-tRNAs is largely independent of the degree of initial saturation with AcPhe-tRNA and is observed in a poly(A) system as well. This observation resolves a current controversy concerning the active fraction of ribosomes. The loss of Ac(Phe)n-tRNA is reduced but still significant if more physiological conditions for Ac(Phe)n synthesis are applied (3 mM Mg2+, 150 mM NH4+, 2 mM spermidine, 0.05 mM spermine). Chloramphenicol (0.1 mM) blocks the puromycin reaction with AcPhe-tRNA as expected but, surprisingly, does not affect the puromycin reaction with Ac(Phe)2-tRNA nor peptide bond formation between AcPhe-tRNA and Phe-tRNA. The drug facilitates the release of Ac(Phe)2-4-tRNA from ribosomes at 14 mM Mg2+ while it hardly affects the overall synthesis of poly(Phe) or poly(Lys).
Collapse
Affiliation(s)
- H J Rheinberger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Federal Republic of Germany
| | | |
Collapse
|
17
|
Nierhaus KH. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 1990; 29:4997-5008. [PMID: 2198935 DOI: 10.1021/bi00473a001] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ribosome contains three binding sites for tRNA, viz., the A site for aminoacyl-tRNA (decoding site), the P site for peptidyl-tRNA, and the E site for deacylated tRNA (E for exit). The surprising finding of an allosteric linkage between the E and A sites in the sense of a negative cooperativity has three consequences: (a) it improves the proper selection of aminoacyl-tRNAs while preventing interference from noncognate aminoacyl-tRNAs in the decoding process, (b) it provides an explanation for the ribosomal accuracy without having to resort to the proofreading hypothesis, and (c) it has deepened our understanding of the mode of action of some antibiotics.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, West Germany
| |
Collapse
|
18
|
Rodnina MV, El'skaya AV, Semenkov YuP, Kirillov SV. Number of tRNA binding sites on 80 S ribosomes and their subunits. FEBS Lett 1988; 231:71-4. [PMID: 3360133 DOI: 10.1016/0014-5793(88)80705-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5-20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology and Genetics, USSR Academy of Sciences, Kiev
| | | | | | | |
Collapse
|
19
|
Rheinberger HJ, Geigenmüller U, Wedde M, Nierhaus KH. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol 1988; 164:658-70. [PMID: 3071687 DOI: 10.1016/s0076-6879(88)64076-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Geigenmüller U, Hausner TP, Nierhaus KH. Analysis of the puromycin reaction. The ribosomal exclusion principle for AcPhe-tRNA binding re-examined. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:715-21. [PMID: 3024981 DOI: 10.1111/j.1432-1033.1986.tb10498.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The standard technique for determination of the ribosomal site location of bound tRNA, viz. the puromycin reaction, has been analyzed with regard to its applicability under tRNA saturation conditions. The criteria derived have been used to re-examine the exclusion principle for peptidyl-tRNA binding, which states that only one peptidyl-tRNA (AcPhe-tRNA) can be bound per ribosome although in principle two sites (A and P site) are available. The following results were obtained. The puromycin reaction is only appropriate for a site determination if the reaction conditions prevent one ribosome from performing more than one puromycin reaction. With an excess of AcPhe-tRNA over ribosomes, and in the absence of EF-G, this criterion is fulfilled at 0 degree C, where the P-site-bound material reacts with puromycin (quantitative reaction after 50 h), while the A-site-bound material does not. In contrast, at 37 degrees C the extent of the puromycin reaction can exceed the binding values by 2-4-fold ('repetitive reaction'). In the presence of EF-G a repetitive puromycin reaction is seen even at 0 degree C, i.e. EF-G can already promote a translocation reaction at 0 degree C. However, the extent of translocation becomes negligibly low for short incubation times (up to 60 min) at 0 degree C, if only catalytic amounts of EF-G are used. Using the criteria outlined above, the validity of the exclusion principle for Escherichia coli ribosomes was confirmed pursuing two different experimental strategies. Ribosomes were saturated with AcPhe-tRNA at one molecule per 70S ribosome, and a quantitative puromycin reaction demonstrated the exclusive P-site location of the AcPhe-tRNA. The same result was also found in the presence of viomycin, which blocks the translocation reaction. These findings also indicate that here nearly 100% of the ribosomes participate in AcPhe-tRNA binding to the P site. Precharging the P sites of 70S ribosomes with one Ac[14C]Phe-tRNA molecule per ribosome prevented additional Ac[3H]Phe-tRNA binding. In contrast, 70S particles carrying one molecule of [14C]tRNAPhe per ribosome were able to bind up to a further 0.64 molecule Ac[3H]Phe-tRNA per ribosome.
Collapse
|
21
|
Kirillov SV, Semenkov YuP. Extension of Watson's model for the elongation cycle of protein biosynthesis. J Biomol Struct Dyn 1986; 4:263-9. [PMID: 3271444 DOI: 10.1080/07391102.1986.10506345] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The scheme for the elongation cycle of protein biosynthesis is proposed based on modern quantitative data on the interactions of mRNA and different functional forms of tRNA with 70S ribosomes and their 30S and 50S subunits. This scheme takes into account recently discovered third ribosomal (E) site with presumable exit function. The E site is introduced into 70S ribosome by its 50S subunit, the codon-anticodon interaction does not take place at the E site, and the affinity of tRNA for the E site is considerably lower than that for the P site. On the other hand, the P and A sites are located mainly on a 30S subunit, the codon-anticodon interactions being realized on both these sites. An mRNA molecule is placed exclusively on a 30S subunit where it makes U-turn. The proposed scheme does not contradict to any data but includes all main postulates of the initial Watson's model (J. D. Watson, Bull. Soc. Chim. Biol. 46, 1399 (1964), and is considered as a natural extension of the later according to modern experimental data.
Collapse
Affiliation(s)
- S V Kirillov
- B. P. Konstantinov Nuclear Physics Institute of the USSR Academy of Sciences, Gatchina, Leningrad District
| | | |
Collapse
|
22
|
Babkina GT, Veniaminova AG, Vladimirov SN, Karpova GG, Yamkovoy VI, Berzin VA, Gren EJ, Cielens IE. Affinity labelling of Escherichia coli ribosomes with a benzylidene derivative of AUGU6 within initiation and pretranslocational complexes. FEBS Lett 1986; 202:340-4. [PMID: 3087780 DOI: 10.1016/0014-5793(86)80714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Affinity labelling of E. coli ribosomes with the 2',3'-O-[4-(N-2-chloroethyl)-N-methylamino]benzylidene derivative of AUGU6 was studied within the initiation complex (complex I) obtained by using fMet-tRNAMetf and initiation factors and within the pretranslocational complex (complex II) obtained by treatment of complex I with the ternary complex Phe-tRNAPhe.GTP.EF-Tu. Both proteins and rRNA of 30 S as well as 50 S subunits were found to be labelled. Sets of proteins labelled within complexes I and II differ considerably. Within complex II, proteins S13 and L10 were labelled preferentially. On the other hand, within complex I, multiple modification is observed (proteins S4, S12, S13, S14, S15, S18, S19, S20/L26 were found to be alkylated) despite the single fixation of a template in the ribosome by interaction of the AUG codon with fMet-tRNAMetf.
Collapse
|
23
|
Rheinberger HJ, Sternbach H, Nierhaus KH. Codon-anticodon interaction at the ribosomal E site. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67629-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
|
25
|
|
26
|
|
27
|
Semenkov YP, Makarov EM, Kirillov SV. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. ACTA ACUST UNITED AC 1985. [DOI: 10.7124/bc.000180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu. P. Semenkov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| | - E. M. Makarov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| | - S. V. Kirillov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| |
Collapse
|
28
|
Gimautdinova OI, Karpova GG, Knorre DG, Frolova SB. Direct cross-linking of heptauridilate to E. coli ribosomes by water-soluble carbodiimide in the complex stabilized by codon-anticodon interaction at both A- and P-sites. FEBS Lett 1985; 185:221-5. [PMID: 3888673 DOI: 10.1016/0014-5793(85)80910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Affinity labelling of E. coli ribosomes is performed by treatment with water-soluble carbodiimide of the complex of ribosomes with (pU)7, tRNAPhe at the P-site and with Phe-tRNAPhe (complex I) and without Phe-tRNAPhe (complex II) at the A-site. The extent of modification is, respectively, 0.06 and 0.026 mol (pU)7 per mol ribosomes. Protein S3 is found as a single labelled protein in complex I, whereas S7, S8, L25 are modified in complex II. Thus, in the absence of a large spacer group within the complex stabilized by codon-anticodon interactions at both A- and P-sites, a highly selective modification occurs.
Collapse
|
29
|
Nygård O, Nilsson L. Quantification of the different ribosomal phases during the translational elongation cycle in rabbit reticulocyte lysates. ACTA ACUST UNITED AC 1985; 145:345-50. [PMID: 6568179 DOI: 10.1111/j.1432-1033.1984.tb08560.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proportionality of different ribosomal phases during elongation was estimated in the highly effective rabbit reticulocyte lysate system by use of several complementary analytical methods. The stoichiometric amounts of ribosome-bound elongation factors EF-1 and EF-2 were determined as a measure of ribosomal A-site occupation. The results were correlated with the puromycin reactivity of the P-site-located nascent polypeptide chains. Approximately 25% of the ribosomes were associated with EF-2, indicating that their A-sites contained peptidyl-tRNA. About 35% were associated with EF-1, signifying that their A-sites were occupied by aminoacyl-tRNA. The puromycin reactivity of the nascent chains was approximately 40%. From these data it is concluded that 75% of the peptidyl-tRNAs were located in the P-sites and that their puromycin reactivity was limited by the availability of ribosomal A-sites free for puromycin interaction. After guanosine 5'-[beta, gamma-methylene]triphosphate blockage of the translation, the ribosomal content of elongation factors drastically changed. Under these conditions the proportion of EF-1-containing ribosomes increased to approximately 50% while EF-2-containing ribosomes decreased to 5%. Concomitantly, the puromycin reactivity increased to approximately 45%. In contrast to previous assumptions the experiments support the view that the elongation rate is limited by the availability of ribosomal A-sites for the selection of mRNA-cognate aminoacyl-tRNAs.
Collapse
|
30
|
Spirin AS. Ribosomal translocation: facts and models. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1985; 32:75-114. [PMID: 3911279 DOI: 10.1016/s0079-6603(08)60346-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Nierhaus KH, Rheinberger HJ. An alternative model for the elongation cycle of protein biosynthesis. Trends Biochem Sci 1984. [DOI: 10.1016/0968-0004(84)90147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Abstract
The ribosomal elongation cycle represents a series of reactions during which the polypeptide is prolonged by one amino acid and after which the prolonged polypeptidyl residue is again ready to accept the next aminoacyl residue. It is generally believed that the ribosome carries two tRNA binding sites, the A site for aminoacyl-tRNA and the P site for peptidyl-tRNA, leading to the classical two-site model of the ribosome as a description for the elongation cycle. However, evidence is accumulating which is in conflict with the classical two-site model. These conflicts are resolved in a new three-site model which is discussed in detail in this paper.
Collapse
|
33
|
Rheinberger HJ, Schilling S, Nierhaus KH. The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 134:421-8. [PMID: 6349990 DOI: 10.1111/j.1432-1033.1983.tb07584.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Kirillov SV, Makarov EM. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett 1983; 157:91-4. [PMID: 6345196 DOI: 10.1016/0014-5793(83)81122-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The 30 S subunit contains 2 sites for tRNA binding (Phe-tRNA, AcPhe-tRNA, tRNAPheOH) with the functional properties of D and A sites of the 70 S ribosome after attachment of 50 S subunit. The third (E) site specific for deacylated tRNA is introduced into 70 S ribosome by its 50 S subunit. The E-site binding of tRNAPheOH is not sensitive to either tetracycline and edeine, and practically codon-independent. The affinity constant of tRNAPheOH for the E site is 2-3 orders of magnitude lower than that for the D site.
Collapse
|