1
|
Botten N, Hodges RR, Li D, Bair JA, Shatos MA, Utheim TP, Serhan CN, Dartt DA. Resolvin D2 elevates cAMP to increase intracellular [Ca 2+] and stimulate secretion from conjunctival goblet cells. FASEB J 2019; 33:8468-8478. [PMID: 31013438 DOI: 10.1096/fj.201802467r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under physiologic conditions, conjunctival goblet cells (CGCs) secrete mucins into the tear film to preserve ocular surface homeostasis. Specialized proresolving mediators (SPMs), like resolvins (Rvs), regulate secretion from CGCs and actively terminate inflammation. The purpose of this study was to determine if RvD2 stimulated mucin secretion and to investigate the cellular signaling components. Goblet cells were cultured from rat conjunctiva. Secretion was measured by an enzyme-linked lectin assay, change in intracellular [Ca2+] ([Ca2+]i) using Fura-2, and cellular cAMP levels by ELISA. RvD2 (10-11-10-8 M) stimulated secretion, increased cellular cAMP levels and the [Ca2+]i. RvD2-stimulated increase in [Ca2+]i and secretion was blocked by Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis and the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride but not by the cAMP exchange protein inhibitor α-[2-(3-chlorophenyl)hydrazinylidene]-5-(1,1-dimethylethyl)-b-oxo-3-isoxazolepropanenitrile. Forskolin, 3-isobutyl-1-methylxanthine, and 8-bromo-cAMP (8-Br-cAMP) increased [Ca2+]i. Increasing cAMP with 8-Br-cAMP inhibited the increase in [Ca2+]i stimulated by the cAMP-independent agonist cholinergic agonist carbachol. In conclusion, RvD2 uses both cellular cAMP and [Ca2+]i to stimulate glycoconjugate secretion from CGCs, but the interaction of cAMP and [Ca2+]i is context dependent. Thus RvD2 likely assists in the maintenance of the mucous layer of the tear film to sustain ocular surface homeostasis and has potential as a novel treatment for dry eye disease.-Botten, N., Hodges, R. R., Li, D., Bair, J. A., Shatos, M. A., Utheim, T. P., Serhan, C. N., Dartt, D. A. Resolvin D2 elevates cAMP to increase intracellular [Ca2+] and stimulate secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Nora Botten
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Shatos
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, USA.,Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Funaki C, Hodges RR, Dartt DA. Role of cAMP inhibition of p44/p42 mitogen-activated protein kinase in potentiation of protein secretion in rat lacrimal gland. Am J Physiol Cell Physiol 2007; 293:C1551-60. [PMID: 17687004 DOI: 10.1152/ajpcell.00013.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.
Collapse
Affiliation(s)
- Chika Funaki
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
3
|
Abstract
Proteins in lacrimal gland fluid are secreted primarily by the acinar cells. Secretory proteins are synthesized in the endoplasmic reticulum, modified in the Golgi apparatus, stored in secretory granules, and released upon a change in the cellular level of second messenger. The second messenger level is controlled by a process termed signal transduction. Agonists, primarily neurotransmitters in the lacrimal gland, bind to receptors in the basolateral membrane of secretory cells. This interaction activates enzymes in the membrane that cause production of second messengers. It has been hypothesized that second messengers stimulate secretion by activating specific protein kinases to phosphorylate proteins important for secretion. In the lacrimal gland, cholinergic agonists stimulate protein secretion. They act by activating phospholipase C to break down phosphatidylinositol bisphosphate into 1,4,5-inositol trisphosphate (1,4,5-IP3) and diacylglycerol (DAG). 1,4,5-IP3 causes release of Ca2+ from intracellular stores. This Ca2+, perhaps in conjunction with calmodulin, activates specific protein kinases that may be involved in secretion. DAG activates protein kinase C which stimulates protein secretion. alpha 1-Adrenergic agonists also stimulate lacrimal gland protein secretion. These agonists use a pathway that is separate from that utilized by cholinergic agonists and vasoactive intestinal peptide (VIP). The specific pathway has not been identified but may be DAG and protein kinase C. VIP, beta-adrenergic agonists, alpha-melanocyte stimulating hormone, and adrenocorticotropic hormone are lacrimal gland secretagogues. They activate adenylate cyclase to produce cAMP. cAMP stimulates protein kinase A, which perhaps causes protein secretion. Thus, three separate cellular pathways stimulate lacrimal gland protein secretion. Cholinergic agonists and VIP also stimulate lacrimal gland fluid secretion, and the same signal transduction pathways utilized by these agonists to stimulate protein secretion are most likely used for electrolyte and water secretion.
Collapse
|
4
|
Cripps MM, Bromberg BB, Patchen-Moor K, Welch MH. Adrenocorticotropic hormone stimulation of lacrimal peroxidase secretion. Exp Eye Res 1987; 45:673-82. [PMID: 2448159 DOI: 10.1016/s0014-4835(87)80116-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of adrenocorticotropic hormone (ACTH) on secretion of lacrimal gland peroxidase was studied using an in vitro perifusion technique. The peptide stimulated a dose-dependent (1 nM to 100 nM) release of peroxidase, with the maximum level of secretion induced by 20 nM ACTH. Secretion in the presence of submaximal ACTH was potentiated with either 100 microM iso-butylmethylxanthine or 0.3 microM carbachol. In contrast, the combination of ACTH and phenylephrine was additive. Time-dependence studies demonstrated that the stimulation of peroxidase release by ACTH, as with other cyclic adenosine monophosphate mediated secretagogues, showed a latency in reaching the maximum rate which was not evident with either cholinergic or alpha-adrenergic stimulation. Furthermore, where potentiation of the response to ACTH occurred, the time course was distinctly altered from that obtained with either ACTH or the potentiating agonist alone. The data suggest that lacrimal gland function is regulated by a multiple system of neurotransmitters and (or) neuromodulators that involves the activation of peptidergic as well as cholinergic and alpha-adrenergic receptors.
Collapse
Affiliation(s)
- M M Cripps
- Department of Biological Sciences, University of New Orleans, LA 70148
| | | | | | | |
Collapse
|
6
|
Bromberg BB, Cripps MM, Welch MH. Sympathomimetic protein secretion by young and aged lacrimal gland. Curr Eye Res 1986; 5:217-23. [PMID: 2421979 DOI: 10.3109/02713688609020046] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The diminished basal tear flow in aged individuals is associated with lymphocytic infiltrations and atrophy of the lacrimal ducts and acini. We have investigated the age-related physiological changes to sympathomimetic stimulation of lacrimal tissue from F344 rats to determine if the responses are uniformly diminished as would be expected by glandular atrophy. The quantitative and temporal pattern of protein and peroxidase secretion by lacrimal gland fragments from young (4 month) and aged (24 month) F344 male rats was examined in a perifusion system. Upon stimulation of tissue from young animals with 0.01 mM phenylephrine for 40 min, secretion above baseline levels of protein was 570.8 micrograms/g tissue and of peroxidase was 45.2 delta A X min-1/g tissue. The response of the aged tissue to phenylephrine was not significantly different from that of the young tissue. beta-adrenergic stimulation by isoproterenol (0.01 mM) evoked only a modest secretion of protein and no consistently measurable peroxidase from young tissue. IBMX alone and in combination with isoproterenol (0.1 mM and 0.01 mM respectively) evoked a large secretion of protein, 1345.7 micrograms/g tissue, and a modest secretion of peroxidase, 9.5 delta A X min-1/g tissue by young tissue. The aged tissue, upon stimulation with the combination of IBMX and isoproterenol, secreted significantly less protein and peroxidase than the young tissue. In separate experiments, the production of cAMP was measured. In young tissue, isoproterenol did not cause a measurable increase of intracellular cAMP. IBMX caused a 2-3 fold increase in cellular cAMP which was not increased further by addition of isoproterenol.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|