1
|
Xin CP, Yang J, Zhu XG. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units. PHOTOSYNTHESIS RESEARCH 2013; 117:339-354. [PMID: 23912704 DOI: 10.1007/s11120-013-9894-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Chlorophyll a fluorescence induction (FI) kinetics, in the microseconds to the second range, reflects the overall performance of the photosynthetic apparatus. In this paper, we have developed a novel FI model, using a rule-based kinetic Monte Carlo method, which incorporates not only structural and kinetic information on PSII, but also a simplified photosystem I. This model has allowed us to successfully simulate the FI under normal or different treatment conditions, i.e., with different levels of measuring light, under 3-(3',4'-dichlorophenyl)-1,1-dimethylurea treatment, under 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone treatment, and under methyl viologen treatment. Further, using this model, we have systematically studied the mechanistic basis and factors influencing the FI kinetics. The results of our simulations suggest that (1) the J step is caused by the two-electron gate at the Q B site; (2) the I step is caused by the rate limitation of the plastoquinol re-oxidation in the plastoquinone pool. This new model provides a framework for exploring impacts of modifying not only kinetic but also structural parameters on the FI kinetics.
Collapse
Affiliation(s)
- Chang-Peng Xin
- CAS Key Laboratory of Computational Biology, CAS-MPG (Chinese Academy of Sciences-German Max Planck Society) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
2
|
Lazár D, Schansker G. Models of Chlorophyll a Fluorescence Transients. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:9-30. [PMID: 32689211 DOI: 10.1071/fp05095] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/18/2005] [Indexed: 05/24/2023]
Abstract
Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O-J-I-P (O-I1-I2-P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1-28]. In addition to 'old' concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), 'new' approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.
Collapse
Affiliation(s)
- Dušan Lazár
- Palacký University, Faculty of Science, Department of Experimental Physics, Laboratory of Biophysics, tř. Svobody 26, 771 46 Olomouc, Czech Republic. Email
| |
Collapse
|
4
|
Lazár D, Ilík P, Kruk J, Strzałka K, Naus J. A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II. J Theor Biol 2004; 233:287-300. [PMID: 15619367 DOI: 10.1016/j.jtbi.2004.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor (Q(A)) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) b559. In the model, cyt b559 accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII (P680+). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, F(M), increases with an increasing amount of initially reduced cyt b559. In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the F(M) level and how this control depends on the initial redox state of cyt b559. The simulations also revealed that increasing the amount of initially reduced cyt b559 could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
5
|
Lazár D. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 2003; 220:469-503. [PMID: 12623282 DOI: 10.1006/jtbi.2003.3140] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about 400 micros (K), 2 ms (J), 30 ms (I), and 200 - 500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F(0) at about 3 ns after the illumination is switched on lasting to about 1 micros, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the F(V)/F(M) ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680(+) is not considered in the simulations or when the electron transfer from Q(A)(-) to Q(B)((-)) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher S state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680(+) and Q(A)(-) is not considered in the simulations or when all OEC is initially in the S(0) state or when the S -state transitions of OEC are slowed down. Slowing down of the S -state transitions of OEC as well as of the electron transfer from Q(A)(-) to Q(B)((-)) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the S -state transitions of OEC as well as in the case of full inhibition of the electron donation to P680(+) by Y(Z), the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the alpha/beta and the Q(B) -reducing/Q(B)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Faculty of Science, Palackỳ University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
6
|
|
7
|
Hideg E, Scott RQ, Inaba H. Spectral resolution of long term (0.5-50 s) delayed fluorescence from spinach chloroplasts. Arch Biochem Biophys 1991; 285:371-2. [PMID: 1897939 DOI: 10.1016/0003-9861(91)90374-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emission spectrum of room temperature delayed fluorescence from spinach chloroplasts does not change during the period 0.5-50 s after the cessation of illumination. This provides experimental evidence that charge recombination processes originating in various charge pairs of photosystem II, and manifest as various kinetical components of long term delayed fluorescence, result in the excitation of the same emitters, as predicted by the charge recombination hypothesis.
Collapse
Affiliation(s)
- E Hideg
- Biophoton Project, Research Development Corporation of Japan (JRDC), Sendai
| | | | | |
Collapse
|
8
|
Schubert H, Hagemann M. Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb03817.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Inhibition of primary photochemistry of photosystem II by copper in isolated pea chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80240-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Schatz GH, Holzwarth AR. Mechanisms of chlorophyll fluorescence revisited: Prompt or delayed emission from photosystem II with closed reaction centers? PHOTOSYNTHESIS RESEARCH 1986; 10:309-318. [PMID: 24435378 DOI: 10.1007/bf00118296] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper proposes a model which correlates the exciton decay kinetics observed in picosecond fluorescence studies with the primary processes of charge separation in the reaction center of photosystem II. We conclude that the experimental results from green algae and chloroplasts from higher plants are inconsistent with the concept that delayed luminescence after charge recombination should account for the long-lived (approx. 2 ns) fluorescence decay component of closed photosystem II centers. Instead, we show that the experimental data are in agreement with a model in which the long-lived fluorescence is also prompt fluorescence. The model suggests furthermore that the rate constant of primary charge separation is regulated by the oxidation state of the quinone acceptor QA.
Collapse
Affiliation(s)
- G H Schatz
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36, D-4330, Mülheim a.d. Ruhr, West Germany
| | | |
Collapse
|
12
|
Geacintov NE, Breton J, Knox RS. Energy migration and exciton trapping in green plant photosynthesis. PHOTOSYNTHESIS RESEARCH 1986; 10:233-242. [PMID: 24435370 DOI: 10.1007/bf00118288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The possible origins of the different fluorescence decay components in green plants are discussed in terms of a random walk and Butler's bipartite model. The interaction of the excitations with the photosystem II reaction centers and, specifically, the regeneration of theses excitations by charge recombination within the reaction centers, are considered. Based on comparisons between fluorescence decay profiles, time-dependent exciton annihilation and photoelectric phenomena, it appears that the fast 200 ps decay component corresponds to primary energy transport from the antenna to the reaction centers and is dominant in filling the photosystem II reaction centers.
Collapse
Affiliation(s)
- N E Geacintov
- Chemistry Department, New York University, 10003, New York, NY
| | | | | |
Collapse
|
13
|
Nedbal L, S̆etlíková E, Masojídek J, S̆etlík I. The nature of photoinhibition in isolated thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90166-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
van Grondelle R. Excitation energy transfer, trapping and annihilation in photosynthetic systems. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0304-4173(85)90017-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Dobek A, Deprez J, Geacintov N, Paillotin G, Breton J. Chlorophyll fluorescence phenomena in chloroplasts on subnanosecond time-scales probed by picosecond pulse pairs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90084-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|