1
|
Liu C, Gao Z, Liu K, Sun R, Cui C, Holzwarth AR, Yang C. Simultaneous refolding of denatured PsbS and reconstitution with LHCII into liposomes of thylakoid lipids. PHOTOSYNTHESIS RESEARCH 2016; 127:109-16. [PMID: 26168990 DOI: 10.1007/s11120-015-0176-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/07/2015] [Indexed: 05/03/2023]
Abstract
The thylakoid membrane protein PsbS is critical for quenching excessive excitation energy in mechanisms that involve the light-harvesting complexes of photosystem II. Liposomes of thylakoid lipids have been shown to be a very good platform to study photosynthetic membrane proteins and their interactions. In this study, we simultaneously refolded and reconstituted functional pea PsbS into liposomes of thylakoid lipids starting from denatured expressed protein. Intrinsic fluorescence spectroscopy, trypsin digestion, and circular dichroism spectroscopy were used to characterize the native state of PsbS in the proteoliposomes. The functionality of refolded PsbS was further demonstrated by its effect on the fluorescence quenching of the major antenna system of photosystem II (LHCII) co-inserted into the liposomes. The fluorescence yield of native trimeric LHCII was lowered by PsbS by 50% at neutral pH and by a further 25% upon lowering the pH to 4.5. Furthermore, the acid-induced fluorescence reduction was completely reversed by addition of N,N'-dicyclohexylcarbodiimide, an inhibitor of protein protonation. These results indicate that reconstituted PsbS induces strong quenching of LHCII sensing changes in local pH via its protonation sites.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, State Forestry Administration Key Open Laboratory on Bamboo and Rattan Science and Technology, Beijing, 100102, People's Republic of China
| | - Kun Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Ruixue Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Chunbo Cui
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
2
|
Sun R, Liu K, Dong L, Wu Y, Paulsen H, Yang C. Direct energy transfer from the major antenna to the photosystem II core complexes in the absence of minor antennae in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:248-261. [PMID: 25461977 DOI: 10.1016/j.bbabio.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Minor antennae of photosystem (PS) II, located between the PSII core complex and the major antenna (LHCII), are important components for the structural and functional integrity of PSII supercomplexes. In order to study the functional significance of minor antennae in the energetic coupling between LHCII and the PSII core, characteristics of PSII-LHCII proteoliposomes, with or without minor antennae, were investigated. Two types of PSII preparations containing different antenna compositions were isolated from pea: 1) the PSII preparation composed of the PSII core complex, all of the minor antennae, and a small amount of major antennae (MCC); and 2) the purified PSII dimeric core complexes without periphery antenna (CC). They were incorporated, together with LHCII, into liposomes composed of thylakoid membrane lipids. The spectroscopic and functional characteristics were measured. 77K fluorescence emission spectra revealed an increased spectral weight of fluorescence from PSII reaction center in the CC-LHCII proteoliposomes, implying energetic coupling between LHCII and CC in the proteoliposomes lacking minor antennae. This result was further confirmed by chlorophyll a fluorescence induction kinetics. The incorporation of LHCII together with CC markedly increased the antenna cross-section of the PSII core complex. The 2,6-dichlorophenolindophenol photoreduction measurement implied that the lack of minor antennae in PSII supercomplexes did not block the energy transfer from LHCII to the PSII core complex. In conclusion, it is possible, in liposomes, that LHCII transfer energy directly to the PSII core complex, in the absence of minor antennae.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Kun Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China
| | - Lianqing Dong
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yuling Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Harald Paulsen
- Institut für Allgemeine Botanik, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müllerweg 6, 55099 Mainz, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China.
| |
Collapse
|
3
|
Abstract
We present an efficient method for flexible comparison of protein structures, allowing swiveling motions. In all currently available methodologies developed and applied to the comparisons of protein structures, the molecules are considered to be rigid objects. The method described here extends and generalizes current approaches to searches for structural similarity between molecules by viewing proteins as objects consisting of rigid parts connected by rotary joints. During the matching, the rigid subparts are allowed to be rotated with respect to each other around swiveling points in one of the molecules. This technique straightforwardly detects structural motifs having hinge(s) between their domains. Whereas other existing methods detect hinge-bent motifs by initially finding the matching rigid parts and subsequently merging these together, our method automatically detects recurring substructures, allowing full 3 dimensional rotations about their swiveling points. Yet the method is extremely fast, avoiding the time-consuming full conformational space search. Comparison of two protein structures, without a predefinition of the motif, takes only seconds to one minute on a workstation per hinge. Hence, the molecule can be scanned for many potential hinge sites, allowing practically all C(alpha) atoms to be tried as swiveling points. This algorithm provides a highly efficient, fully automated tool. Its complexity is only O(n2), where n is the number of C(alpha) atoms in the compared molecules. As in our previous methodologies, the matching is independent of the order of the amino acids in the polypeptide chain. Here we illustrate the performance of this highly powerful tool on a large number of proteins exhibiting hinge-bending domain movements. Despite the motions, known hinge-bent domains/motifs which have been assembled and classified, are correctly identified. Additional matches are detected as well. This approach has been motivated by a technique for model based recognition of articulated objects originating in computer vision and robotics.
Collapse
Affiliation(s)
- G Verbitsky
- Computer Science Department, School of Mathematical Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
4
|
Biochemical and biophysical properties of thylakoid acyl lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(09)91002-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80207-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Sprague SG. Structural and functional consequences of galactolipids on thylakoid membrane organization. J Bioenerg Biomembr 1987; 19:691-703. [PMID: 3320041 DOI: 10.1007/bf00762303] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic membranes of higher plant chloroplasts are composed primarily of polar, but uncharged, galactolipids unlike most mammalian membranes which contain large amounts of phosphatidylcholine. It is unclear what role(s) the galactolipids play in maintaining the differentiated thylakoid membranes, or in stabilizing the photosynthetically active enzyme complexes. Some of the membrane complexes show no lipid selectivity for maintaining structural or functional integrity. Others are poisoned or dissociated in the presence of high concentrations of a trace lipid class. The efficiency of energy transfer and the reconstitution of protein complexes into liposomes are dependent on the lipid class employed. The lipids are asymmetrically arranged along and across the thylakoid membranes but not as distinctly as the proteins.
Collapse
Affiliation(s)
- S G Sprague
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown 26506
| |
Collapse
|
7
|
Reassembly of solubilized chlorophyll-protein complexes in proteolipid particles — Comparison of monogalactosyldiacylglycerol and two phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90234-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
|
9
|
Davies EC, Chow WS, Jordan BR. A study of factors which regulate the membrane appression of lettuce thylakoids in relation to irradiance. PHOTOSYNTHESIS RESEARCH 1986; 9:359-370. [PMID: 24442367 DOI: 10.1007/bf00029800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/1985] [Revised: 10/14/1985] [Indexed: 06/03/2023]
Abstract
Factors that may influence the extent of thylakoid membrane appression have been examined using lettuce (Lactuca sativa cv. Celtuce) grown under different irradiances. Electron microscopy and salt-induced chlorophyll fluorescence suggest that the percentage of membrane appression is increased in plants grown in low light (20 Wm(-2)) compared with those grown in high light (150 Wm(-2)). In high light plants surface charge, as measured by 9-aminoacridine, was found to be twice that measured in low light plants. There was a similar difference in ATPase activity of CF1 and in light saturated photophosphorylation. The chlorophyll content of LHC-2 as a proportion of the total chlorophyll was greatest in thylakoids of low light plants. Measurement of non-cyclic photophosphorylation rates suggested that membrane appression has a stimulatory role in the photophosphorylation process. The importance of these inter-related factors for the mechanism of thylakoid appression is discussed.
Collapse
Affiliation(s)
- E C Davies
- Glasshouse Crops Research Institute, Worthing Road, BN17 6LP, Littlehampton, West Sussex, England
| | | | | |
Collapse
|
10
|
Murphy DJ. Reconstitution of energy transfer and electron transfer between solubilised pigment-protein complexes from thylakoid membranes. The role of acyl lipids. PHOTOSYNTHESIS RESEARCH 1986; 8:219-233. [PMID: 24443260 DOI: 10.1007/bf00037130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/1985] [Revised: 07/03/1985] [Indexed: 06/03/2023]
Abstract
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.
Collapse
Affiliation(s)
- D J Murphy
- Research Institute for Photosynthesis, University of Sheffield, 26 Taptonville Road, S10 5BR, Sheffield, UK
| |
Collapse
|