1
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
|
3
|
Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 2005; 11:102-18. [PMID: 16323019 DOI: 10.1007/s00775-005-0040-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (H(inact) state) and the CO-inhibited active form (H(ox)-CO state) were stable in light. Illumination of the H(ox) state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable H(ox)-CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the H(ox)-CO state. Electrochemical redox titrations showed that the enzyme in the H(inact) state converts to the transition state (H(trans)) in a reversible one-electron redox step (E (m, pH 7) = -75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the H(trans) state reacts with extrinsic CO, which binds to Fe2. The H(trans) state converts irreversibly into the H(ox) state in a redox-dependent reaction most likely involving two electrons (E (m, pH 7) = -261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the H(red) state (E (m, pH 7) = -354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below -500 mV) lead to destruction of the [2Fe]H subcluster.
Collapse
Affiliation(s)
- Winfried Roseboom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Albracht SPJ, Roseboom W, Hatchikian EC. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 2005; 11:88-101. [PMID: 16323020 DOI: 10.1007/s00775-005-0039-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
5
|
Fiedler AT, Brunold TC. Computational Studies of the H-Cluster of Fe-Only Hydrogenases: Geometric, Electronic, and Magnetic Properties and Their Dependence on the [Fe4S4] Cubane. Inorg Chem 2005; 44:9322-34. [PMID: 16323916 DOI: 10.1021/ic050946f] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The active sites of Fe-only hydrogenases (FeHases) feature an unusual polynuclear iron-sulfur cluster, known as the H-cluster, that consists of a [Fe4S4] cubane linked to a di-iron subunit (the [2Fe]H component) via a bridging cysteine ligand (SCys). While previous computational studies of FeHases employed H-cluster models that only included the [2Fe]H component, we have utilized density functional theory (DFT), in conjunction with the broken-symmetry (BS) approach, to explore the geometric, electronic, and magnetic properties of the entire H-cluster. These calculations have allowed us to evaluate, for the first time, the influence of the [Fe4S4] cubane on the [2Fe]H component of the H-cluster in its active (Hox) and CO-inhibited (Hox-CO) states, both of which are paramagnetic (S=1/2). Our results reveal that the presence of the cubane tunes both the position and the donor strength of the SCys ligand, which, in turn, modulates the internal geometric and electronic structures of the [2Fe]H subcluster. Importantly, the BS methodology provides an accurate description of the exchange interactions within the H-cluster, permitting insight into the electronic origin of the changes in magnetic properties observed experimentally upon conversion of Hox to Hox-CO. Specifically, while the unpaired spin density in the Hox state is localized on the distal Fe center, in the Hox-CO state, it is delocalized over the [2Fe]H component, such that the proximal Fe center acquires significant spin density (where distal and proximal refer to the positions of the Fe centers relative to the cubane). To validate our H-cluster models on the basis of experimental data, two DFT-based approaches and the semiempirical INDO/S method have been employed to compute electron paramagnetic resonance parameters for the H-cluster states. While most computations yield reasonably accurate g values and ligand hyperfine coupling constants (i.e., A values) for the Hox and Hox-CO states, they fail to reproduce the isotropic 57Fe A tensors found experimentally. Finally, extension of the computational methodology employed successfully for the Hox and Hox-CO states to the metastable Hoxphoto state, generated by irradiation of the Hox-CO state at cryogenic temperatures, has allowed us to discriminate between proposed structural models for this species.
Collapse
Affiliation(s)
- Adam T Fiedler
- Department of Chemistry, University of Wisconsin-Madison, 1101 West University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
6
|
The iron-sulfur composition of the active site of hydrogenase fromDesulfovibrio vulgaris(Hildenborough) deduced from its subunit structure and total iron-sulfur content. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)81436-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Affiliation(s)
- Codrina V. Popescu
- Contribution from the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Eckard Münck
- Contribution from the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
8
|
Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999; 7:13-23. [PMID: 10368269 DOI: 10.1016/s0969-2126(99)80005-7] [Citation(s) in RCA: 1071] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases. RESULTS We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified. CONCLUSIONS The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.
Collapse
Affiliation(s)
- Y Nicolet
- Laboratoire de Cristallographie et de Cristallogènese des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS 41, Grenoble, France
| | | | | | | | | |
Collapse
|
9
|
Hu Z, Jollie D, Burgess BK, Stephens PJ, Münck E. Mössbauer and EPR studies of Azotobacter vinelandii ferredoxin I. Biochemistry 1994; 33:14475-85. [PMID: 7981208 DOI: 10.1021/bi00252a014] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Azotobacter vinelandii ferredoxin I (FdI) is a small protein that contains one Fe4S4 cluster and one Fe3S4 cluster. Previous studies of FdI have shown that the redox potential of the Fe3S4 cluster and the MCD and CD spectra of the reduced Fe3S4 cluster are pH-dependent. Using Mössbauer and EPR spectroscopy, we have studied FdI in different oxidation states and at different pH values. Here, we report the spin Hamiltonian parameters of the oxidized (S = 1/2) Fe3S4 cluster at pH 7.4 and the reduced (S = 2) Fe3S4 cluster at pH 6.0 and 8.5. The pH dependence observed by MCD is also evident in the Mössbauer spectra which show a change of the magnetic hyperfine tensor for one Fe site of the valence-delocalized pair. The Fe4S4 cluster is ligated by cysteines 20, 39, 42, and 45, but not by the adjacent cysteine 24. Treatment of FdI with 3 equiv of ferricyanide alters the Fe4S4 cluster, yielding a new species, [Fe4S4]'. The S = 1/2 EPR signal of [Fe4S4]' has previously been attributed to the formation of a cysteine disulfide radical from Cys24 and cluster sulfide. Here we show that the EPR signal is broadened by 57Fe, indicating that the electronic spin is significantly coupled to the cluster iron. Consistent with this, substantial magnetic hyperfine interactions are observed by Mössbauer spectroscopy. In addition, the average isomer shift of the four Fe sites is smaller for [Fe4S4]' than for [Fe4S4]2+, indicating that the oxidation is iron-based to at least some extent. Incubation of FdI with excess ferricyanide destroys the Fe4S4 cluster but leaves the Fe3S4 cluster intact. Our studies of (3Fe)FdI show that the S = 1/2 spin of the Fe3S4 cluster interacts with another paramagnet, presumably a radical generated at the site left vacant by the removal of the Fe4S4 cluster.
Collapse
Affiliation(s)
- Z Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890
| | | | | | | | | |
Collapse
|
10
|
Hatchikian EC, Forget N, Fernandez VM, Williams R, Cammack R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:357-65. [PMID: 1327776 DOI: 10.1111/j.1432-1033.1992.tb17297.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans ATCC 7757, previously reported to be a single-subunit protein [Glick, B. R., Martin, W. G., and Martin, S. M. (1980) Can. J. Microbiol. 26, 1214-1223] were reinvestigated. The pure enzyme exhibited a molecular mass of 53.5 kDa as measured by analytical ultracentrifugation and was found to comprise two different subunits of 42.5 kDa and 11 kDa, with serine and alanine as N-terminal residues, respectively. The N-terminal amino acid sequences of its large and small subunits, determined up to 25 residues, were identical to those of the Desulfovibrio vulgaris Hildenborough [Fe]-hydrogenase. D. desulfuricans ATCC 7757 hydrogenase was free of nickel and contained 14.0 atoms of iron and 14.4 atoms of acid-labile sulfur/molecule and had E400, 52.5 mM-1.cm-1. The purified hydrogenase showed a specific activity of 62 kU/mg of protein in the H2-uptake assay, and the H2-uptake activity was higher than H2-evolution activity. The enzyme isolated under aerobic conditions required incubation under reducing conditions to express its maximum activity both in the H2-uptake and 2H2/1H2 exchange reaction. The ratio of the activity of activated to as-isolated hydrogenase was approximately 3. EPR studies allowed the identification of two ferredoxin-type [4Fe-4S]1+ clusters in hydrogenase samples reduced by hydrogen. In addition, an atypical cluster exhibiting a rhombic signal (g values 2.10, 2.038, 1.994) assigned to the H2-activating site in other [Fe]-hydrogenases was detected in partially reduced samples. Molecular properties, EPR spectroscopy, catalytic activities with different substrates and sensitivity to hydrogenase inhibitors indicated that D. desulfuricans ATCC 7757 periplasmic hydrogenase is a [Fe]-hydrogenase, similar in most respects to the well characterized [Fe]-hydrogenase from D. vulgaris Hildenborough.
Collapse
Affiliation(s)
- E C Hatchikian
- Laboratoire de Chimie Bacterienne, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | |
Collapse
|
11
|
Pierik AJ, Hagen WR, Redeker JS, Wolbert RB, Boersma M, Verhagen MF, Grande HJ, Veeger C, Mutsaers PH, Sands RH. Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:63-72. [PMID: 1396719 DOI: 10.1111/j.1432-1033.1992.tb17261.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The periplasmic Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough) contains three iron-sulfur prosthetic groups: two putative electron transferring [4Fe-4S] ferredoxin-like cubanes (two F-clusters), and one putative Fe/S supercluster redox catalyst (one H-cluster). Combined elemental analysis by proton-induced X-ray emission, inductively coupled plasma mass spectrometry, instrumental neutron activation analysis, atomic absorption spectroscopy and colorimetry establishes that elements with Z > 21 (except for 12-15 Fe) are present in 0.001-0.1 mol/mol quantities, not correlating with activity. Isoelectric focussing reveals the existence of multiple charge conformers with pI in the range 5.7-6.4. Repeated re-chromatography results in small amounts of enzyme of very high H2-production activity determined under standardized conditions (approximately 7000 U/mg). The enzyme exists in two different catalytic forms: as isolated the protein is 'resting' and O2-insensitive; upon reduction the protein becomes active and O2-sensitive. EPR-monitored redox titrations have been carried out of both the resting and the activated enzyme. In the course of a reductive titration, the resting protein becomes activated and begins to produce molecular hydrogen at the expense of reduced titrant. Therefore, equilibrium potentials are undefined, and previously reported apparent Em and n values [Patil, D. S., Moura, J. J. G., He, S. H., Teixeira, M, Prickril, B. C., DerVartanian, D. V., Peck, H. D. Jr, LeGall, J. & Huynh, B.-H. (1988) J. Biol. Chem. 263, 18,732-18,738] are not thermodynamic quantities. In the activated enzyme an S = 1/2 signal (g = 2.11, 2.05, 2.00; 0.4 spin/protein molecule), attributed to the oxidized H cluster, exhibits a single reduction potential, Em,7 = -307 mV, just above the onset potential of H2 production. The midpoint potential of the two F clusters (2.0 spins/protein molecule) has been determined either by titrating active enzyme with the H2/H+ couple (E,m = -330 mV) or by dithionite-titrating a recombinant protein that lacks the H-cluster active site (Em,7.5 = -340 mV). There is no significant redox interaction between the two F clusters (n approximately 1).
Collapse
Affiliation(s)
- A J Pierik
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Hydrogenases devoid of nickel and containing only Fe-S clusters have been found so far only in some strictly anaerobic bacteria. Four Fe-hydrogenases have been characterized: from Megasphaera elsdenii, Desulfovibrio vulgaris (strain Hildenborough), and two from Clostridium pasteurianum. All contain two or more [4Fe-4S]1+,2+ or F clusters and a unique type of Fe-S center termed the H cluster. The H cluster appears to be remarkably similar in all the hydrogenases, and is proposed as the site of H2 oxidation and H2 production. The F clusters serve to transfer electrons between the H cluster and the external electron carrier. In all of the hydrogenases the H cluster is comprised of at least three Fe atoms, and possibly six. In the oxidized state it contains two types of magnetically distinct Fe atoms, has an S = 1/2 spin state, and exhibits a novel rhombic EPR signal. The reduced cluster is diamagnetic (S = 0). The oxidized H cluster appears to undergo a conformation change upon reduction with H2 with an increase in Fe-Fe distances of about 0.5 A. Studies using resonance Raman, magnetic circular dichroism and electron spin echo spectroscopies suggest that the H cluster has significant non-sulfur coordination. The H cluster has two binding sites for CO, at least one of which can also bind O2. Binding to one site changes the EPR properties of the cluster and gives a photosensitive adduct, but does not affect catalytic activity. Binding to the other site, which only becomes exposed during the catalytic cycle, leads to loss of catalytic activity. Mechanisms of H2 activation and electron transfer are proposed to explain the effects of CO binding and the ability of one of the hydrogenases to preferentially catalyze H2 oxidation.
Collapse
Affiliation(s)
- M W Adams
- Department of Biochemistry, University of Georgia, Athens 30602
| |
Collapse
|
13
|
Zambrano IC, Kowal AT, Mortenson LE, Adams MW, Johnson MK. Magnetic Circular Dichroism and Electron Paramagnetic Resonance Studies of Hydrogenases I and II from Clostridium pasteurianum. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30032-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Fauque G, Peck HD, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 1988; 4:299-344. [PMID: 3078655 DOI: 10.1111/j.1574-6968.1988.tb02748.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Fauque
- Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, Saint-Paul-Lez-Durance, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Patil DS, He SH, DerVartanian DV, Le Gall J, Huynh BH, Peck HD. The relationship between activity and the axial g = 2.06 EPR signal induced by CO in the periplasmic (Fe) hydrogenase from Desulfovibrio vulgaris. FEBS Lett 1988; 228:85-8. [PMID: 2830138 DOI: 10.1016/0014-5793(88)80590-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of exposure to carbon monoxide on the activity of the (Fe) hydrogenase from Desulfovibrio vulgaris has been determined. Concentrations of carbon monoxide which completely inhibit hydrogenase activity and induce formation of the axial g = 2.06 EPR signal up to 0.8 spin/molecule do not cause irreversible inhibition of the (Fe) hydrogenase.
Collapse
Affiliation(s)
- D S Patil
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | | | | | | | |
Collapse
|
16
|
Patil DS, Czechowski MH, Huynh BH, LeGall J, Peck HD, DerVartanian DV. A reversible effect of low carbon monoxide concentrations on the EPR spectra of the periplasmic hydrogenase from Desulfovibrio vulgaris. Biochem Biophys Res Commun 1986; 137:1086-93. [PMID: 3015136 DOI: 10.1016/0006-291x(86)90336-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of low concentrations of CO (0.93 - 5.58 microM) on the EPR spectrum of the periplasmic non-heme iron hydrogenase from D. vulgaris has been investigated. The "g = 2.06" EPR signal is maximally induced (0.94 spin/molecule) at 46.5 microM CO and partial induction of the EPR signal could be observed at 0.93 microM CO. This effect is reversed by removal of the CO or irradiation of the hydrogenase with white light.
Collapse
|
17
|
Hagen WR, van Berkel-Arts A, Krüse-Wolters KM, Dunham WR, Veeger C. EPR of a novel high-spin component in activated hydrogenase from Desulfovibrio vulgaris (Hildenborough). FEBS Lett 1986; 201:158-62. [PMID: 3011503 DOI: 10.1016/0014-5793(86)80590-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The EPR of reoxidized hydrogenase from Desulfovibrio vulgaris (H.) has been reinvestigated. In contrast to other workers [(1984) Proc. Natl. Acad. Sci. USA 81, 3728-3732] we find the axial signal with g = 2.06; 2.01 to be only a minor component of concentration 0.03 spin/mol. In the spectrum of fully active reoxidized enzyme this signal is overshadowed by a rhombic signal (0.1 spin/mol) with g = 2.11; 2.05; 2.00 reminiscent of the only signal found for other oxidized bidirectional hydrogenases. In addition, a novel signal has been detected with geff = 5.0 which, under the assumptions that S = 2 and [delta ms] = 2, quantitates to roughly one spin/mol. Ethylene glycol affects the relative intensity of the different signals. It is suggested that O2 sensitization parallels a spin-state transition of an iron-sulfur cluster.
Collapse
|
18
|
Fernandez VM, Rao KK, Fernandez MA, Cammack R. Activation and deactivation of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Norway strain. Biochimie 1986; 68:43-8. [PMID: 3015248 DOI: 10.1016/s0300-9084(86)81066-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrogenase from D. desulfuricans, when isolated in air, had a low activity in the hydrogen-methyl viologen reductase assay, and no activity in the hydrogen-methylene blue reductase assay. The activity increased markedly during incubation under hydrogen. This process is interpreted in terms of conversion of the enzyme from a relatively inactive Unready state to the Active state. Oxidation by dichloro-indophenol caused conversion to a state in which the hydrogen-uptake activity to methyl viologen was preserved, but hydrogen-methylene blue activity was not. This form is termed the Ready state. This behaviour resembles that of the hydrogenase of Desulfovibrio gigas and thus may be a widespread property of this class of hydrogenases. The electron-spin-resonance spectra of the D. desulfuricans enzyme showed the presence of [3Fe-xS] and [4Fe-4S] clusters. Spectra were also observed in the various states of activation of the enzyme. In these respects, the hydrogenase of D. desulfuricans resembles that from D. gigas, although the latter may have an additional iron-sulphur cluster.
Collapse
|
19
|
Adams MW, Johnson MK, Zambrano IC, Mortenson LE. On the novel H2-activating iron-sulfur center of the "Fe-only" hydrogenases. Biochimie 1986; 68:35-42. [PMID: 3015247 DOI: 10.1016/s0300-9084(86)81065-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The two hydrogenases (I and II) of the anaerobic N2-fixing bacterium Clostridium pasteurianum (Cp) and the hydrogenases of the anaerobes Megasphaera elsdenii (Me) and Desulfovibrio vulgaris (strain Hildenborough, Dv), contain iron-sulfur clusters but not nickel. They are the most active hydrogenases known. All four enzymes in their reduced states give rise to EPR signals typical of [4Fe-4S]1+ clusters but exhibit novel EPR signals in their oxidized states. For example, Cp hydrogenase I exhibits a sharp rhombic EPR signal when oxidized under mild conditions but the enzyme is inactivated by over-oxidation and then exhibits an axial EPR signal. A similar axial signal is observed from mildly oxidized hydrogenase I after treatment with CO. EPR, Mössbauer and ENDOR spectroscopy indicate that the EPR signals from the oxidized enzyme and its CO derivative arise from a novel spin-coupled Fe center. Low temperature magnetic circular dichroism (MCD) studies reveal that an EPR-silent Fe-S cluster with S greater than 1/2 is also present in oxidized hydrogenase I. From a study of all spectroscopic properties of Cp, Dv, and Me hydrogenases, it is concluded that the H2-activating site of all four is a novel Fe-S cluster with S greater than 0 and integer, which in the oxidized state is exchange-coupled to a S = 1/2 species. The data are most consistent with the S = 1/2 species being a low spin Fe(III) center. The H2-activating site is susceptible to oxidative rearrangements to yield both active and inactive states of the enzyme. We discuss the possible implications of these finding to methods of enzyme oxidation and purification procedures currently used for hydrogenases.
Collapse
|