1
|
Bargaz A, Lazali M, Amenc L, Abadie J, Ghoulam C, Farissi M, Faghire M, Drevon JJ. Differential expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts in nodule cortex of Phaseolus vulgaris and regulation of nodule O2 permeability. PLANTA 2013; 238:107-119. [PMID: 23575967 DOI: 10.1007/s00425-013-1877-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Although the role of phosphatases and antioxidant enzymes have been documented in phosphorus (P) deficiency tolerance, gene expression differences in the nodules of nitrogen fixing legumes should also affect tolerance to this soil constraint. In this study, root nodules were induced by Rhizobium tropici CIAT899 in two Phaseolus vulgaris recombinant inbred lines (RIL); RIL115 (low P-tolerant) and RIL147 (low P-sensitive) under hydroaeroponic culture with sufficient versus deficient P supply. Trehalose 6-P phosphatase and ascorbate peroxidase transcripts were localized within nodules in which O2 permeability was measured. Results indicate that differential tissues-specific expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts within nodules was detected particularly in infected zone and cortical cells. Under P-deficiency, trehalose 6-P phosphatase transcript was increased and mainly localized in infected zone and outer cortex of RIL115 as compared to RIL147. Ascorbate peroxidase transcript was highly expressed under P-sufficiency in the infected zone, inner cortex and vascular traces of RIL115 rather than RIL147. In addition, significant correlations were found between nodule O2 permeability and both peroxidase (r = 0.66*) and trehalose 6-P phosphatase enzyme activities (r = 0.79*) under sufficient and deficient P conditions, respectively. The present findings suggest that the tissue-specific localized trehalose 6-P phosphatase and ascorbate peroxidase transcripts of infected cells and nodule cortex are involved in nitrogen fixation efficiency and are likely to play a role in nodule respiration and adaptation to P-deficiency.
Collapse
Affiliation(s)
- Adnane Bargaz
- Institut National de la Recherche Agronomique INRA, UMR1222 Ecologie Fonctionnelle and Biogéochimie des Sols and des Agroécosystèmes, INRA-IRD-CIRAD-SupAgro, 2 Place Pierre Viala, 34060, Montpellier Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN. Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. PHYSIOLOGIA PLANTARUM 2011; 141:201-214. [PMID: 21114673 DOI: 10.1111/j.1399-3054.2010.01433.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant responses and nodule function of Medicago truncatula genotypes differing in salt tolerance were studied. Salinity effects on nodules were analysed on key nitrogen fixation proteins such as nitrogenase and leghaemoglobin as well as estimating lipid peroxidation levels, and were found more dramatic in the salt-sensitive genotype. Antioxidant enzyme assays for catalase (CAT, EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) were analysed in nodules, roots and leaves treated with increasing concentrations of NaCl for 24 and 48 h. Symbiosis tolerance level, depending essentially on plant genotype, was closely correlated with differences of enzyme activities, which increased in response to salt stress in nodules (except CAT) and roots, whereas a complex pattern was observed in leaves. Gene expression responses were generally correlated with enzymatic activities in 24-h treated roots in all genotypes. This correlation was lost after 48 h of treatment for the sensitive and the reference genotypes, but it remained positively significant for the tolerant one that manifested a high induction for all tested genes after 48 h of treatment. Indeed, tolerance behaviour could be related to the induction of antioxidant genes in plant roots, leading to more efficient enzyme stimulation and protection. High induction of CAT gene was also distinct in roots of the tolerant genotype and merits further consideration. Thus, part of the salinity tolerance in M. truncatula is related to induction and sustained expression of highly regulated antioxidant mechanisms.
Collapse
Affiliation(s)
- Haythem Mhadhbi
- Laboratory of Legumes (LL), CBBC, BP 901, 2050 Hammam lif, Tunisia INA, CERTH, 6th km Charilaou-Thermis Road, 57001 Thermi, Greece.
| | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Tejera NA, Campos R, Sanjuan J, Lluch C. Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:329-338. [PMID: 15077631 DOI: 10.1078/0176-1617-01050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Common bean plants inoculated with salt-tolerant Rhizobium tropici wild-type strain CIAT899 formed a more active symbiosis than did its decreased salt-tolerance (DST) mutant derivatives (HB8, HB10, HB12 and HB13). The mutants formed partially effective (HB10, HB12) or almost ineffective (HB8, HB13) nodules (Fix(d)) under non-saline conditions. The DST mutant formed nodules that accumulated more proline than did the wild-type nodules, while soluble sugars were accumulated mainly in ineffective nodules. Under salt stress, plant growth, nitrogen fixation, and the activities of the antioxidant defense enzymes of nodules were affected in all symbioses tested. Overall, mutant nodules showed lower antioxidant enzyme activities than wild-type nodules. Levels of nodule catalase appeared to correlate with symbiotic nitrogen-fixing efficiency. Superoxide dismutase and dehydroascorbate reductase seem to function in the molecular mechanisms underlying the tolerance of nodules to salinity.
Collapse
Affiliation(s)
- Noel A Tejera
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | | | | |
Collapse
|
5
|
Rubio MC, González EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. PHYSIOLOGIA PLANTARUM 2002; 115:531-540. [PMID: 12121459 DOI: 10.1034/j.1399-3054.2002.1150407.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants (Medicago sativa L. x Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, and FeSOD in the chloroplasts. In general for all lines, water stress caused moderate decreases in MnSOD and FeSOD activities in both leaves and nodules, but had distinct tissue-dependent effects on the activities of the peroxide-scavenging enzymes. During water stress, with a few exceptions, ascorbate peroxidase and catalase activities increased moderately in leaves but decreased in nodules. At mild water stress, transgenic lines showed, on average, 20% higher photosynthetic activity than the parental line, which suggests a superior tolerance of transgenic plants under these conditions. However, the untransformed and the transgenic plants performed similarly during moderate and severe water stress and recovery with respect to important markers of metabolic activity and of oxidative stress in leaves and nodules. We conclude that the base genotype used for transformation and the background SOD isozymic composition may have a profound effect on the relative tolerance of the transgenic lines to abiotic stress.
Collapse
Affiliation(s)
- Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 202,E-50080 Zaragoza, Spain Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, E-31006 Pamplona, Spain Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Kustka A, Carpenter EJ, Sañudo-Wilhelmy SA. Iron and marine nitrogen fixation: progress and future directions. Res Microbiol 2002; 153:255-62. [PMID: 12160315 DOI: 10.1016/s0923-2508(02)01325-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A synthesis of the current understanding of potential iron limitation of pelagic nitrogen fixation is given, considering biochemical bases of Fe requirements and empirical observations of growth and Fe quotas of cultures and field populations of Trichodesmium. The potential for iron limitation of heterotrophic diazotrophy in the marine environment is also evaluated.
Collapse
Affiliation(s)
- Adam Kustka
- Marine Sciences Research Center, State University of New York at Stony Brook, NY 11794-5000, USA.
| | | | | |
Collapse
|
7
|
Svanem BI, Strand WI, Ertesvag H, Skjåk-Braek G, Hartmann M, Barbeyron T, Valla S. The catalytic activities of the bifunctional Azotobacter vinelandii mannuronan C-5-epimerase and alginate lyase AlgE7 probably originate from the same active site in the enzyme. J Biol Chem 2001; 276:31542-50. [PMID: 11390391 DOI: 10.1074/jbc.m102562200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Azotobacter vinelandii genome encodes a family of seven secreted Ca(2+)-dependent epimerases (AlgE1--7) catalyzing the polymer level epimerization of beta-D-mannuronic acid (M) to alpha-L-guluronic acid (G) in the commercially important polysaccharide alginate. AlgE1--7 are composed of two types of protein modules, A and R, and the A-modules have previously been found to be sufficient for epimerization. AlgE7 is both an epimerase and an alginase, and here we show that the lyase activity is Ca(2+)-dependent and also responds similarly to the epimerases in the presence of other divalent cations. The AlgE7 lyase degraded M-rich alginates and a relatively G-rich alginate from the brown algae Macrocystis pyrifera most effectively, producing oligomers of 4 (mannuronan) to 7 units. The sequences cleaved were mainly G/MM and/or G/GM. Since G-moieties dominated at the reducing ends even when mannuronan was used as substrate, the AlgE7 epimerase probably stimulates the lyase pathway, indicating a complex interplay between the two activities. A truncated form of AlgE1 (AlgE1-1) was converted to a combined epimerase and lyase by replacing the 5'-798 base pairs in the algE1-1 gene with the corresponding A-module-encoding DNA sequence from algE7. Furthermore, substitution of an aspartic acid residue at position 152 with glycine in AlgE7A eliminated almost all of both the lyase and epimerase activities. Epimerization and lyase activity are believed to be mechanistically related, and the results reported here strongly support this hypothesis by suggesting that the same enzymatic site can catalyze both reactions.
Collapse
Affiliation(s)
- B I Svanem
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
8
|
Santos R, Hérouart D, Puppo A, Touati D. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Mol Microbiol 2000; 38:750-9. [PMID: 11115110 DOI: 10.1046/j.1365-2958.2000.02178.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In nitrogen-poor soils, rhizobia elicit nodule formation on legume roots, within which they differentiate into bacteroids that fix atmospheric nitrogen. Protection against reactive oxygen species (ROS) was anticipated to play an important role in Rhizobium-legume symbiosis because nitrogenase is extremely oxygen sensitive. We deleted the sodA gene encoding the sole cytoplasmic superoxide dismutase (SOD) of Sinorhizobium meliloti. The resulting mutant, deficient in superoxide dismutase, grew almost normally and was only moderately sensitive to oxidative stress when free living. In contrast, its symbiotic properties in alfalfa were drastically affected. Nitrogen-fixing ability was severely impaired. More strikingly, most SOD-deficient bacteria did not reach the differentiation stage of nitrogen-fixing bacteroids. The SOD-deficient mutant nodulated poorly and displayed abnormal infection. After release into plant cells, a large number of bacteria failed to differentiate into bacteroids and rapidly underwent senescence. Thus, bacterial SOD plays a key protective role in the symbiotic process.
Collapse
Affiliation(s)
- R Santos
- Laboratoire de Génétique Moléculaire des Réponses Adaptatives, Institut Jacques Monod, CNRS-Universités Paris 6 and Paris 7, 2 place Jussieu 75251 Paris cedex 05, France
| | | | | | | |
Collapse
|
9
|
Oelze J. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 2000; 24:321-33. [PMID: 10978541 DOI: 10.1111/j.1574-6976.2000.tb00545.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The hypothesis of respiratory protection, originally formulated on the basis of results obtained with Azotobacter species, postulates that consumption of O(2) at the surface of diazotrophic prokaryotes protects nitrogenase from inactivation by O(2). Accordingly, it is assumed that, at increased ambient O(2) concentrations, nitrogenase activity depends on increased activities of a largely uncoupled respiratory electron transport system. The present review compiles evidence indicating that cellular O(2) consumption as well as both the activity and the formation of the respiratory system of Azotobacter vinelandii are controlled by the C/N ratio, that is to say the ratio at which the organism consumes the substrate (i.e. the source of carbon, reducing equivalents and ATP) per source of compound nitrogen. The maximal respiratory capacity which can be attained at increased C/N ratios, however, is controlled, within limits, by the ambient O(2) concentration. When growth becomes N-limited at increased C/N ratios, cells synthesize nitrogenase and fix N(2). Under these diazotrophic conditions, cellular O(2) consumption remains constant at a level controlled by the O(2) concentration. Control by O(2) has been studied on the basis of both whole cell respiration and defined segments of the respiratory electron transport chain. The results demonstrate that the effect of O(2) on the respiratory system is restricted to the lower range of O(2) concentrations up to about 70 microM. Nevertheless, azotobacters are able to grow diazotrophically at dissolved O(2) concentrations of up to about 230 microM indicating that respiratory protection is not warranted at increased ambient O(2) concentrations. This conclusion is supported and extended by a number of results largely excluding an obvious relationship between nitrogenase activity and the actual rate of cellular O(2) consumption. On the basis of theoretical calculations, it is assumed that the rate of O(2) diffusion into the cells is not significantly affected by respiration. All of these results lead to the conclusion that, in the protection of nitrogenase from O(2) damage, O(2) consumption at the cell surface is less effective than generally assumed. It is proposed that alternative factors like the supply of ATP and reducing equivalents are more important.
Collapse
Affiliation(s)
- J Oelze
- Universität Freiburg, Institut für Biologie II (Mikrobiologie), Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
10
|
Santos R, Bocquet S, Puppo A, Touati D. Characterization of an atypical superoxide dismutase from Sinorhizobium meliloti. J Bacteriol 1999; 181:4509-16. [PMID: 10419947 PMCID: PMC103580 DOI: 10.1128/jb.181.15.4509-4516.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti Rm5000 is an aerobic bacterium that can live free in the soil or in symbiosis with the roots of leguminous plants. A single detectable superoxide dismutase (SOD) was found in free-living growth conditions. The corresponding gene was isolated from a genomic library by using a sod fragment amplified by PCR from degenerate primers as a probe. The sodA gene was located in the chromosome. It is transcribed monocistronically and encodes a 200-amino-acid protein with a theoretical M(r) of 22,430 and pI of 5. 8. S. meliloti SOD complemented a deficient E. coli mutant, restoring aerobic growth of a sodA sodB recA strain, when the gene was expressed from the synthetic tac promoter but not from its own promoter. Amino acid sequence alignment showed great similarity with Fe-containing SODs (FeSODs), but the enzyme was not inactivated by H(2)O(2). The native enzyme was purified and found to be a dimeric protein, with a specific activity of 4,000 U/mg. Despite its Fe-type sequence, atomic absorption spectroscopy showed manganese to be the cofactor (0.75 mol of manganese and 0.24 mol of iron per mol of monomer). The apoenzyme was prepared from crude extracts of S. meliloti. Activity was restored by dialysis against either MnCl(2) or Fe(NH(4))(2)(SO(4))(2), demonstrating the cambialistic nature of the S. meliloti SOD. The recovered activity with manganese was sevenfold higher than with iron. Both reconstituted enzymes were resistant to H(2)O(2). Sequence comparison with 70 FeSODs and MnSODs indicates that S. meliloti SOD contains several atypical residues at specific sites that might account for the activation by manganese and resistance to H(2)O(2) of this unusual Fe-type SOD.
Collapse
Affiliation(s)
- R Santos
- Laboratoire de Génétique Moléculaire des Réponses Adaptatives, Institut Jacques Monod, CNRS-Universités Paris 6 et 7, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
11
|
Sigaud S, Becquet V, Frendo P, Puppo A, Hérouart D. Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 1999; 181:2634-9. [PMID: 10198032 PMCID: PMC93694 DOI: 10.1128/jb.181.8.2634-2639.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two catalases, KatA and KatB, have been detected in Sinorhizobium meliloti growing on rich medium. Here we characterize a new catalase gene encoding a third catalase (KatC). KatC activity was detectable only at the end of the stationary phase in S. meliloti growing in minimum medium, whereas KatA activity was found during the exponential phase. Analysis with a katC-lacZ fusion demonstrated that katC expression is mainly regulated at the transcription level. An increase of catalase activity correlating with KatA induction was detected in bacteroids. A dramatic decrease of nitrogen fixation capacity in a katA katC double mutant was observed, suggesting that these catalases are very important for the protection of the nitrogen fixation process.
Collapse
Affiliation(s)
- S Sigaud
- Laboratoire de Biologie Végétale et Microbiologie, Unité de Recherche Associée ERS 590, Centre National de la Recherche Scientifique, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
12
|
Hérouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A. Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J Bacteriol 1996; 178:6802-9. [PMID: 8955300 PMCID: PMC178579 DOI: 10.1128/jb.178.23.6802-6809.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the involvement of bacterial catalases of the symbiotic gram-negative bacterium Rhizobium meliloti in the development of Medicago-Rhizobium functional nodules, we cloned a putative kat gene by screening a cosmid library with a catalase-specific DNA probe amplified by PCR from the R. meliloti genome. Nucleotide sequence analysis of a 1.8-kb DNA fragment revealed an open reading frame, called katA, encoding a peptide of 562 amino acid residues with a calculated molecular mass of 62.9 kDa. The predicted amino acid sequence showed a high homology with the primary structure of monofunctional catalases from eucaryotes and procaryotes. The katA gene was localized on the chromosome, and the katA gene product was essentially found in the periplasmic space. A katA::Tn5 mutant was obtained and showed a drastic sensitivity to hydrogen peroxide, indicating an essential protective role of KatA. However, neither Nod nor Fix phenotypes were impaired in the mutant, suggesting that KatA is not essential for nodulation and establishment of nitrogen fixation. Exposure to a sublethal concentration of H2O2 enhanced KatA activity (100-fold) and also increased survival to subsequent H2O2 exposure at higher concentrations. No protection is observed in katA::Tn5, indicating that KatA is the major component of an adaptive response.
Collapse
Affiliation(s)
- D Hérouart
- Laboratoire de Biologie Végétale et Microbiologie, Unité de Recherche Associée, Centre National de la Recherche Scientifique, Université de Nice Sophia-Antipolis, France.
| | | | | | | | | | | |
Collapse
|
13
|
Pagani S, Colnaghi R, Palagi A, Negri A. Purification and characterization of an iron superoxide dismutase from the nitrogen-fixing Azotobacter vinelandii. FEBS Lett 1995; 357:79-82. [PMID: 8001685 DOI: 10.1016/0014-5793(94)01339-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two electrophoretically distinct forms of superoxide dismutase (SOD; EC 1.15.1.1) which show different inhibition patterns to hydrogen peroxide have been identified in Azotobacter vinelandii. The SOD inhibited by hydrogen peroxide was purified to homogeneity, and turned out to be an iron superoxide dismutase. The enzyme is present in only one molecular form with an isoelectric point of 4.1, and it is composed of two identical subunits with an apparent molecular weight of 21,000 Da. Spectroscopic analyses indicated that this enzyme contains ferric iron (1.4-1.6 mol/mol protein) in the typical high-spin form present in other prokaryotic Fe-SODs. N-Terminal sequence alignments (up to the 49th residue) showed that A. vinelandii Fe-SOD has high similarity with other prokaryotic Fe-SODs.
Collapse
Affiliation(s)
- S Pagani
- Dipartimento di Scienze Molecolari Agroalimentari, CISMI, University of Milano, Italy
| | | | | | | |
Collapse
|
14
|
Saralabai VC, Vivekanandan M. Does application of cement kiln exhausts affect root nodule biochemistry and soil N2-fixing microbes? Appl Biochem Biotechnol 1995. [DOI: 10.1007/bf02788036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Grilli Caiola M, Canini A, Galiazzo F, Rotilio G. Superoxide dismutase in vegetative cells, heterocysts and akinetes ofAnabaena cylindricaLemm. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04654.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Grilli Caiola M, Canini A, Moscone D. Oxygen concentration, nitrogenase activity and heterocyst frequency in the leaf cavities ofAzolla filiculoidesLam. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03126.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Abstract
Oxygen can be either beneficial or detrimental for diazotrophy in organisms capable of an aerobic catabolism. It supports the production of a substrate for nitrogenase (ATP), but it can also inhibit the activity and repress the synthesis of this enzyme. Here, aspects of the relevant physiology are reviewed with particular emphasis on those relating to the mechanism of O2 regulation of nitrogenase synthesis.
Collapse
Affiliation(s)
- S Hill
- AFRC-IPSR Division of Nitrogen Fixation, University of Sussex, Brighton, U.K
| |
Collapse
|
18
|
Dingler C, Oelze J. Superoxide dismutase and catalase in Azotobacter vinelandii grown in continuous culture at different dissolved oxygen concentrations. Arch Microbiol 1987. [DOI: 10.1007/bf00463490] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|