Xu Y, Siegenthaler PA. Phosphatidylglycerol molecular species of photosynthetic membranes analyzed by high-performance liquid chromatography: theoretical considerations.
Lipids 1996;
31:223-9. [PMID:
8835412 DOI:
10.1007/bf02522624]
[Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A reversed-phase high-performance liquid chromatography technique was developed to separate, identify, and quantify individual phosphatidylglycerol (PG) molecular species in thylakoid membranes isolated from higher plant leaves. PG was first separated by thin-layer chromatography; then the dinitrobenzoyl derivatives of diacylglycerols produced after phospholipase C hydrolysis of PG were separated by a C18 reversed-phase column and detected at 254 nm. A linear response of the detector was observed in the range of 0.025 to 12 nmol of PG molecular species. It was established that there was an excellent correlation (r = 0.996) between the carbon and double-bond number in the aliphatic residues and the relative retention time of dinitrobenzoyl derivatives. A new equivalent carbon number value (ECN*) which takes into consideration the number of cis-(nc) and trans-(nt) double bonds per molecular species was defined as ECN* = CN - 2nc - nt, where CN is the number of carbon atoms in the aliphatic residues. The logarithm of the retention time increased linearily as a function of ECN* value. However, in this type of correlation, it may happen that two molecular species of PG having distinct relative retention times had the same ECN* value. In this case, the two molecular species can be identified by the linear correlation (r = 1) existing between the reciprocal of the relative retention time and the number of double bonds (0 < or = n < or = 3) in the separate 18:n/delta 3-trans-hexadecenoic acid -16:1(3t)- and 18:n/16:0 molecular species series. The advantages of this method are good separation, cohort elution time, quantitative precision, and predictable retention times of PG molecular species from chloroplast membranes. The method has been used routinely to identify the ten PG molecular species of thylakoid membranes in squash, potato, lettuce, and spinach leaf: 18:3/16:1(3t), 18:3/16:0, 18:2/16:1(3t), 18:2/16:0, 18:1/16:1(3t), 18:1/16:0, 18:0/16:1(3t), 18:0/16:0, 16:0/16:1(3t), and 16:0/16:0.
Collapse