1
|
Sousa FJR, Lima LMTR, Pacheco ABF, Oliveira CLP, Torriani I, Almeida DF, Foguel D, Silva JL, Mohana-Borges R. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH. J Mol Biol 2006; 359:1059-74. [PMID: 16701697 DOI: 10.1016/j.jmb.2006.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon.
Collapse
Affiliation(s)
- Francisco J R Sousa
- Laboratório de Genômica Estrutural, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janerio, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005; 187:7655-66. [PMID: 16267290 PMCID: PMC1280312 DOI: 10.1128/jb.187.22.7655-7666.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.
Collapse
Affiliation(s)
- Nora Au
- Department of Chemistry, Williams College, Williamstown, MA 01267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Relan NK, Jenuwine ES, Gumbs OH, Shaner SL. Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator. Biochemistry 1997; 36:1077-84. [PMID: 9033397 DOI: 10.1021/bi9618427] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of Escherichia coli LexA repressor to the recA operator was examined as a function of the concentration of NaCl, KCl, NaF, and MgCl2 at pH 7.5, 21 degrees C. The effects of pH at 100 mM NaCl were also examined. Changes both in the qualitative appearance of the binding isotherms and in the magnitude of the apparent binding affinity with changes in solution conditions suggest that binding of anions and protons by LexA repressor is linked to oligomerization and/or operator binding. Binding of LexA repressor to the recA operator in the presence of NaCl ranging from 25 to 400 mM at picomolar DNA concentration showed a broad, apparently noncooperative, binding isotherm. Binding of LexA repressor in NaF at the same [DNA] yielded binding isotherms with a narrow transition, reflecting an apparently cooperative binding process. Also, the apparent binding affinity was weaker in NaF than in NaCl. Furthermore, the binding affinity and also the apparent binding mode, cooperative vs noncooperative, were pH dependent. The binding affinity of LexA repressor for operator was greatest near neutral pH. The apparent binding mode was noncooperative at pH 7-9 but was cooperative at pH 6 or 9.3. These observations suggest that the specific cation and anion composition and concentrations must be considered in understanding the details of regulation of the SOS system.
Collapse
Affiliation(s)
- N K Relan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
4
|
Paz-Elizur T, Skaliter R, Blumenstein S, Livneh Z. β*, a UV-inducible Smaller Form of the β Subunit Sliding Clamp of DNA Polymerase III of Escherichia coli. J Biol Chem 1996. [DOI: 10.1074/jbc.271.5.2482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Tadmor Y, Bergstein M, Skaliter R, Shwartz H, Livneh Z. Beta subunit of DNA polymerase III holoenzyme is induced upon ultraviolet irradiation or nalidixic acid treatment of Escherichia coli. Mutat Res 1994; 308:53-64. [PMID: 7516486 DOI: 10.1016/0027-5107(94)90198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exposure of Escherichia coli to UV irradiation or nalidixic acid, which induce both the SOS and heat shock responses, led to a 3-4-fold increase in the amount of the beta subunit of DNA polymerase III holoenzyme, as assayed by Western blot analysis using anti-beta antibodies. Such an induction was observed also in a delta rpoH mutant lacking the heat shock-specific sigma 32 subunit of RNA polymerase, but it was not observed in recA13 or lexA3 mutants, in which the SOS response cannot be induced. Mapping of transcription initiation sites of the dnaN gene, encoding the beta subunit, using the S1 nuclease protection assay showed essentially no induction of transcription upon UV irradiation, indicating that induction is regulated primarily at the post-transcriptional level. Analysis of translational gene fusions of the dnaN gene, encoding the beta subunit, to the lacZ reporter gene showed induction of beta-galactosidase activity upon UV irradiation of cells harboring the fusion plasmids. Elimination of a 5' flanking DNA sequence in which the dnaN promoters P1 and P2 were located, did not affect the UV inducibility of the gene fusions. Thus, element(s) present from P3 downstream were sufficient for the UV induction. The induction of the dnaN-lacZ gene fusions was dependent on the recA and lexA gene products, but not on the rpoH gene product, in agreement with the immunoblot analysis. The dependence of dnaN induction on the SOS regulators was not mediated via classical repression by the LexA repressor, since the dnaN promoter does not contain a sequence homologous to the LexA binding site, and dnaN mRNA was not inducible by UV light. This suggests that SOS control may be imposed indirectly, by a post-transcriptional mechanism. The increased amount of the beta subunit is needed, most likely, for increased replication and repair activities in cells which have been exposed to UV radiation.
Collapse
Affiliation(s)
- Y Tadmor
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
6
|
Dri AM, Moreau PL. Control of the LexA regulon by pH: evidence for a reversible inactivation of the LexA repressor during the growth cycle of Escherichia coli. Mol Microbiol 1994; 12:621-9. [PMID: 7934886 DOI: 10.1111/j.1365-2958.1994.tb01049.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The LexA repressor controls the expression of several genes, including lexA, recA, and sfiA, which are induced when exponentially growing bacteria are exposed to DNA-damaging agents. Induction of this so-called SOS response takes place while LexA is cleaved in a reaction that requires the RecA protein and damaged DNA. We have shown that large fluctuations in the cellular concentration of the LexA repressor and in the rate of transcription of the sfiA gene also occur spontaneously during bacterial growth in complex medium such as LB. The possibility that changes in external or internal pH may explain these fluctuations has been explored. A consistent pattern was established whereby conditions leading to either increased or decreased pH were associated with altered expression of the lexA and sfiA genes. These data can be explained by a model in which the LexA repressor exists in either of two forms in equilibrium: a form favoured at homeostatic internal pH, which has a low affinity for the operators of LexA-controlled genes; and a form accumulated in response to a transient decrease in internal pH, which has a high affinity for operators.
Collapse
Affiliation(s)
- A M Dri
- Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Lewis LK, Jenkins ME, Mount DW. Isolation of DNA damage-inducible promoters in Escherichia coli: regulation of polB (dinA), dinG, and dinH by LexA repressor. J Bacteriol 1992; 174:3377-85. [PMID: 1577702 PMCID: PMC206008 DOI: 10.1128/jb.174.10.3377-3385.1992] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A new genetic screening method has been developed to isolate Escherichia coli promoters which are components of the SOS regulon. Plasmids containing the regulatory regions of polB (dinA) and two new loci, dinG and dinH, were characterized. Galactokinase gene fusion experiments indicated that transcription of these genes is inducible by treatment with mitomycin and conforms to a classical model of SOS regulation involving simple LexA repression. Mapping studies using the E. coli DNA library of Kohara et al. (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) revealed that dinG and dinH are located at 17.8 and 19.8 min on the chromosome, respectively. The nucleotide sequence of the dinH regulatory region contains a segment which is very similar to previously characterized binding sites for LexA protein. An asymmetric, noncanonical 20-bp LexA operator in the cloned dinG promoter region was identified. Additional experiments have revealed that the nucleotide sequence of the gene immediately downstream of the DNA damage-inducible polB locus encodes a polypeptide which has extensive sequence homology to several known and putative DNA and RNA helicase proteins. This gene, which is not regulated by the LexA repressor, has been designated hepA. The predicted amino acid sequence of the product of hepA contains several highly conserved sequence motifs that are also found in enzymes such as the RecQ and UvrB proteins of E. coli and the Rad3 protein of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- L K Lewis
- Molecular and Cellular Biology Department, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
8
|
Schnarr M, Oertel-Buchheit P, Kazmaier M, Granger-Schnarr M. DNA binding properties of the LexA repressor. Biochimie 1991; 73:423-31. [PMID: 1911942 DOI: 10.1016/0300-9084(91)90109-e] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The LexA repressor from Escherichia coli negatively regulates the transcription of about 20 different genes upon binding with variable affinity to single-, double- or even triple-operators as in the case of the recN gene. Binding of LexA to multiple operators is cooperative if the spacing between these operators is favorable. LexA recognizes DNA via its amino-terminal domain. The three-dimensional structure of this domain has been determined by NMR measurements. It contains three alpha-helices spanning residues 8-20, 28-35 and 41-54. In view of this structure, but also according to homology considerations and the unusual contact pattern with the DNA backbone, the LexA repressor is not a normal helix-turn-helix DNA binding protein like for example phage lambda repressor. LexA is at best a distant relative of this class of transcription factors and should probably be considered as a protein that contains a new DNA binding motif. A cluster of LexA mutant repressors deficient in DNA binding falling into the third helix (residues 41-54 bp) suggests that this helix is involved in DNA recognition.
Collapse
Affiliation(s)
- M Schnarr
- Institut de Biologie Moléculaire et Cellulaire, CNRS LP6201, Strasbourg, France
| | | | | | | |
Collapse
|
9
|
Interaction of a regulatory protein with a DNA target containing two overlapping binding sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52244-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Abstract
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.
Collapse
Affiliation(s)
- C P Selby
- University of North Carolina, School of Medicine, Department of Biochemistry, Chapel Hill 27599
| | | |
Collapse
|
11
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
12
|
Abstract
We have studied the in vitro interaction of the LexA repressor protein and the uvrC regulatory region. We find that there is specific binding to two regions, the region we have defined as lexA1 and the lexA2-lexA3 region. Our findings support the possibility of an inducible regulation for this complex operon.
Collapse
Affiliation(s)
- T Stark
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
13
|
Bertrand-Burggraf E, Oertel P, Schnarr M, Daune M, Granger-Schnarr M. Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Plasmid 1989; 22:163-8. [PMID: 2695953 DOI: 10.1016/0147-619x(89)90026-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number.
Collapse
|
14
|
Abstract
This review describes the evolution of research into the genetic basis of how different organisms use the process of excision repair to recognize and remove lesions from their cellular DNA. One particular aspect of excision repair, DNA incision, and how it is controlled at the genetic level in bacteriophage, bacteria, S. cerevisae, D. melanogaster, rodent cells and humans is examined. In phage T4, DNA is incised by a DNA glycosylase-AP endonuclease that is coded for by the denV gene. In E. coli, the products of three genes, uvrA, uvrB and uvrC, are required to form the UVRABC excinuclease that cleaves DNA and releases a fragment 12-13 nucleotides long containing the site of damage. In S. cerevisiae, genes complementing five mutants of the RAD3 epistasis group, rad1, rad2, rad3, rad4 and rad10 have been cloned and analyzed. Rodent cells sensitive to a variety of mutagenic agents and deficient in excision repair are being used in molecular studies to identify and clone human repair genes (e.g. ERCC1) capable of complementing mammalian repair defects. Most studies of the human system, however, have been done with cells isolated from patients suffering from the repair defective, cancer-prone disorder, xeroderma pigmentosum, and these cells are now beginning to be characterized at the molecular level. Studies such as these that provide a greater understanding of the genetic basis of DNA repair should also offer new insights into other cellular processes, including genetic recombination, differentiation, mutagenesis, carcinogenesis and aging.
Collapse
Affiliation(s)
- J S Rubin
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
15
|
Forster JW, Strike P. Analysis of the regulatory elements of the Escherichia coli uvrC gene by construction of operon fusions. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:531-7. [PMID: 2835638 DOI: 10.1007/bf00425712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The regulatory region of the Escherichia coli uvrC gene has been analysed by the subcloning of appropriate restriction fragments into the promoter probe vector pPV502. A series of plasmids carrying operon fusions to the gene for chloramphenicol acetyltransferase (cat) has been constructed. Three promoters capable of controlling uvrC have been identified (P1, P2 and P3), the majority of transcription being derived from the most distal of these promoters (P1). Transcription termination apparently plays some role in the control of the gene through premature termination of the P1-, but not the P2- or P3-derived transcripts. In addition, a promoter acting in the opposite direction to uvrC transcription has been detected. The activity of each of the promoters has been assayed under normal and SOS-inducing conditions. The uvrC gene is not apparently under the control of the recA-lexA regulatory circuit, unlike uvrA and uvrB. A series of recombinant plasmids carrying a 1.9 kb Bg/II fragment encoding most of the uvrC gene has been constructed. The properties of these plasmids suggest that the six amino acids at the carboxy-terminus of the uvrC gene product are not critical for DNA repair activity.
Collapse
Affiliation(s)
- J W Forster
- Department of Agricultural Botany, University College of Wales, Dyfed, UK
| | | |
Collapse
|
16
|
Moolenaar GF, van Sluis CA, Backendorf C, van de Putte P. Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res 1987; 15:4273-89. [PMID: 3295776 PMCID: PMC340847 DOI: 10.1093/nar/15.10.4273] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The UvrA, UvrB and UvrC proteins of E. coli are subunits of a DNA repair enzyme, the ABC exonuclease. In this paper we study the uvrC regulatory region. The uvrC structural gene is preceded by an open reading frame encoding a 24 kD protein. A uvrC promoter has been mapped within this gene. The transcription start of a second promoter located 5' of the 24 kD gene is mapped in vivo. We show that transcription from both promoters on the chromosome is not inducible by UV damage. The possible translation start codons of the UvrC and of the 24 kD protein are determined. Sequences encoding the N-terminal part of the UvrC protein overlap with sequences encoding the C-terminal part of the 24 kD protein. To examine a possible function of the 24 kD gene in repair, a 24 kD insertion mutant was created in the chromosome. The mutant however only slightly affects the UV sensitivity of the cell. Transcription of P3 alone provides sufficient UvrC protein for the normal repair of UV lesions.
Collapse
|
17
|
Bertrand-Burggraf E, Hurstel S, Daune M, Schnarr M. Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain. J Mol Biol 1987; 193:293-302. [PMID: 3298658 DOI: 10.1016/0022-2836(87)90220-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comparative study of the interaction of the LexA repressor of Escherichia coli and of its amino-terminal DNA binding domain to the uvrA operator has been undertaken. Most of the binding constants are determined from competition experiments with RNA polymerase by measuring the time-course of the abortive initiation transcriptional activity. The presence of repressor increases the lag time, tau, without affecting the final maximum activity. The inhibition of transcription by LexA, at least in the case of the uvrA gene, is thus a transient, time-dependent phenomenon, because once the RNA polymerase is engaged in a stable "open" complex, it is quasi-irreversibly trapped in this state. A study of the binding constants as a function of ionic strength suggests the formation of 5.5(+/- 1) salt bridges between the uvrA operator and a LexA dimer. Surprisingly, the binding affinity of the amino-terminal domain was only about one order of magnitude smaller than that of the entire LexA repressor. The determination of the binding constant of the RNA polymerase to the "closed" uvrA promoter (KB approximately 1 X 10(7) to 2 X 10(7) M-1) allowed us to determine theoretical repression curves for the two repressor species. These calculations show that the binding constant found for LexA is sufficiently high to account for substantial or complete repression, and that of the amino-terminal domain is sufficiently low to account for partial or nearly full induction. Under solvent conditions used by others for the determination of binding constants to other SOS operators by DNAase I footprinting, the uvrA operator turns out to be a rather weak one (K approximately 3 X 10(7) M-1), being comparable with that of the uvrB gene. The uvrA promoter is "association-limited" with a KB X k2 product fitting very nicely the homology score for the promoter of 55.
Collapse
|