1
|
Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O. eEF1B: At the dawn of the 21st century. ACTA ACUST UNITED AC 2006; 1759:13-31. [PMID: 16624425 DOI: 10.1016/j.bbaexp.2006.02.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 12/18/2022]
Abstract
Translational regulation of gene expression in eukaryotes can rapidly and accurately control cell activity in response to stimuli or when rapidly dividing. There is increasing evidence for a key role of the elongation step in this process. Elongation factor-1 (eEF1), which is responsible for aminoacyl-tRNA transfer on the ribosome, is comprised of two entities: a G-protein named eEF1A and a nucleotide exchange factor, eEF1B. The multifunctional nature of eEF1A, as well as its oncogenic potential, is currently the subject of a number of studies. Until recently, less work has been done on eEF1B. This review describes the macromolecular complexity of eEF1B, its multiple phosphorylation sites and numerous cellular partners, which lead us to suggest an essential role for the factor in the control of gene expression, particularly during the cell cycle.
Collapse
Affiliation(s)
- Frédéric Le Sourd
- Equipe Cycle Cellulaire et Développement, Unité Mer and Sante, UMR 7150 CNRS/UPMC, Station Biologique de Roscoff, BP 74, 29682 Roscoff Cedex, France
| | | | | | | | | | | | | |
Collapse
|
2
|
Kidou S, Tsukamoto S, Kobayashi S, Ejiri S. Isolation and characterization of a rice cDNA encoding the gamma-subunit of translation elongation factor 1B (eEF1Bgamma). FEBS Lett 1998; 434:382-6. [PMID: 9742959 DOI: 10.1016/s0014-5793(98)01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We isolated a rice cDNA clone (refg) encoding the gamma-subunit of translation elongation factor 1B (eEF-1B gamma; the old designation was EF-1 gamma). The refg encodes an open reading frame of 419 amino acids which shows a similarity to the equivalent sequences from animals and yeast. Complex formation analysis, which showed the recombinant protein of refg (His-eEF1B gamma) and formed a complex with GST-eEF-1Bbeta, indicated that the refg encodes rice eEF1B gamma of the eEF1B alphabeta gamma complex. Expression analysis showed that refg mRNA is very abundant in suspension-cultured cells during the exponential phase of growth. A DNA blot analysis indicated that refg is located at a single locus in the rice genome.
Collapse
Affiliation(s)
- S Kidou
- Cryobiosystem Research Center, Faculty of Agriculture, Iwate University, Morioka, Japan.
| | | | | | | |
Collapse
|
3
|
Bellé R, Minella O, Cormier P, Morales J, Poulhe R, Mulner-Lorillon O. Phosphorylation of elongation factor-1 (EF-1) by cdc2 kinase. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:265-70. [PMID: 9552369 DOI: 10.1007/978-1-4615-1809-9_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elongation factor-1 (EF-1) is a major substrate for cdc2 kinase in Xenopus oocytes. The guanine-nucleotide exchange factor EF-1 beta gamma delta, appears to have a highly complex macromolecular structure containing several GTP/GDP exchange proteins, valyl-tRNA synthetase, and a putative anchoring protein EF-1 gamma. During meiotic cell division, the factor becomes phosphorylated by cdc2 kinase, not only on EF-1 gamma, but also on two different phospho-acceptors on EF-1 delta. Phosphorylation is concomitant with changes in protein synthesis in vivo. Xenopus oocytes, and potentially all cells, contain a multitude of heteromeric forms of the complex which postulates that EF-1 beta gamma delta is not a "house keeping" factor but a sophisticated regulatory element.
Collapse
Affiliation(s)
- R Bellé
- Biologie Cellulaire de l'Ovocyte, CNRS URA 1449, INRA, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
4
|
Das T, Mathur M, Gupta AK, Janssen GM, Banerjee AK. RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proc Natl Acad Sci U S A 1998; 95:1449-54. [PMID: 9465035 PMCID: PMC19039 DOI: 10.1073/pnas.95.4.1449] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1997] [Indexed: 02/06/2023] Open
Abstract
An RNA-dependent RNA polymerase is packaged within the virions of purified vesicular stomatitis virus, a nonsegmented negative-strand RNA virus, which carries out transcription of the genome RNA into mRNAs both in vitro and in vivo. The RNA polymerase is composed of two virally encoded polypeptides: a large protein L (240 kDa) and a phosphoprotein P (29 kDa). Recently, we obtained biologically active L protein from insect cells following infection by a recombinant baculovirus expressing L gene. During purification of the L protein from Sf21 cells, we obtained in addition to an active L fraction an inactive fraction that required uninfected insect cell extract to restore its activity. The cellular factors have now been purified, characterized, and shown to be beta and gamma subunits of the protein synthesis elongation factor EF-1. We also demonstrate that the alpha subunit of EF-1 remains tightly bound to the L protein in the inactive fraction and betagamma subunits associate with the L(alpha) complex. Further purification of L(alpha) from the inactive fraction revealed that the complex is partially active and is significantly stimulated by the addition of betagamma subunits purified from Sf21 cells. A putative inhibitor(s) appears to co-elute in the inactive fraction that blocked the L(alpha) activity. The purified virions also package all three subunits of EF-1. These findings have a striking similarity with Qbeta RNA phage, which also associates with the bacterial homologue of EF-1 for its replicase function, implicating a possible evolutionary relationship between these host proteins and the RNA-dependent RNA polymerase of RNA viruses.
Collapse
Affiliation(s)
- T Das
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, NC20, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
5
|
Sheu GT, Traugh JA. Recombinant subunits of mammalian elongation factor 1 expressed in Escherichia coli. Subunit interactions, elongation activity, and phosphorylation by protein kinase CKII. J Biol Chem 1997; 272:33290-7. [PMID: 9407120 DOI: 10.1074/jbc.272.52.33290] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The first step in elongation requires two different activities; elongation factor (EF)-1alpha transfers aminoacyl-tRNA to the ribosome and is released upon hydrolysis of GTP, EF-1betagammadelta catalyzes exchange of GDP on EF-1alpha with GTP. To analyze the role of the individual subunits of EF-1 in elongation, the cDNAs for the beta, gamma, and delta subunits of EF-1 from rabbit were cloned, and proteins of 225, 437, and 280 amino acids, respectively, were expressed in Escherichia coli. The purified recombinant beta subunit migrates as a dimer and the gamma subunit as a trimer upon gel filtration, whereas the delta subunit forms a large aggregate. Complexes of betagamma, gammadelta and betagammadelta were formed by self-association and eluted with a molecular mass of approximately 160, 530, and 670 kDa, respectively; no interaction was observed between beta and delta. The activity of the recombinant subunits was determined with native EF-1alpha by measuring stimulation of the rate of elongation by poly(U)-directed polyphenylalanine synthesis. Recombinant beta and delta alone stimulated the rate of elongation by 10-fold, with a ratio of 5alpha:2beta or delta. The betagammadelta complex stimulated EF-1alpha activity up to 10-fold with a ratio of 20alpha to 1betagammadelta. Phosphorylation of the beta and delta subunits alone or in betagammadelta by protein kinase CKII had no effect on the rate of elongation.
Collapse
Affiliation(s)
- G T Sheu
- Department of Biochemistry and the Genetics Graduate Group, University of California, Riverside, California 92521-0129, USA
| | | |
Collapse
|
6
|
Mita K, Morimyo M, Ito K, Sugaya K, Ebihara K, Hongo E, Higashi T, Hirayama Y, Nakamura Y. Comprehensive cloning of Schizosaccharomyces pombe genes encoding translation elongation factors. Gene 1997; 187:259-66. [PMID: 9099890 DOI: 10.1016/s0378-1119(96)00764-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the course of the Schizosaccharomyces pombe cDNA project, we succeeded in cloning all the genes encoding translation elongation factors EF-1alpha, EF-1beta, EF-1gamma, EF-2 and EF-3. With the exception of the EF-1gamma gene, the nucleotide (nt) sequence of S. pombe elongation factors has not been previously reported. For EF-1alpha, we found three genes whose amino acid (aa) sequences are quite homologous each other (99.5%), but whose 3' untranslated regions (UTRs) are completely different. Southern blot indicated that those three EF-1alpha genes are located at different loci. Northern analysis indicated that one of three EF-1alpha genes was inducible with UV-irradiation, while the level of expression for another of three EF-1alpha genes was repressed by UV and heat-shock (HS) treatments. The aa sequence predicted from the nt sequence of the S. pombe EF-1beta cDNA clone covered almost all the coding sequence (CDS) of EF-1beta except the first methionine which has 55.4% identity with that of S. cerevisiae. We also identified two copies of S. pombe EF-2 genes. Their aa sequences deduced from nt sequences are identical (100%), but they have different 3' UTRs. The location of these two EF-2 genes in different loci was proved by Southern analysis. The S. pombe EF-3 cDNA clone encoded only a third of the CDS from the C-terminal and its deduced aa sequence has a 76% identity with those of other yeasts and fungi.
Collapse
Affiliation(s)
- K Mita
- Genome Research Group, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lim EH, Corrochano LM, Elgar G, Brenner S. Genomic structure and sequence analysis of the valyl-tRNA synthetase gene of the Japanese pufferfish, Fugu rubripes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1997; 7:141-51. [PMID: 9254008 DOI: 10.3109/10425179709034030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genomic sequence and exon-intron organisation of the valyl-tRNA synthetase gene in the Japanese pufferfish, Fugu rubripes, have been determined. This single-copy Fugu gene spans 8.5 kb, about 2.5 times smaller than that in man (21 kb). It contains 29 exons, with the largest intron being 1008 bp. The predicted polypeptide consists of 1217 amino acids, with a molecular weight of 138 kD and an isoelectric point of 7.27. It shares 40% identity in the overlapping region with its homolog in bacteria, 47% with yeast, and 67% with man. The Fugu gene has an additional N-terminal sequence which shows strong similarity to elongation factory-1gamma, a feature it shares only with the human sequence, but not with any other lower eukaryote or prokaryote studied so far. This N-terminal segment is encoded in the first six exons, suggesting their capture by a translocation through introns. Indeed, the acquisition of extra domains to perform related functions in RNA splicing and translation of polypeptides has already been observed in other aminoacyl-tRNA synthetases. Two cDNA sequences of human valyl-tRNA synthetase have been published, with discrepancies between them. Aided by comparisons with the Fugu gene, three of these discrepancies have been resolved, involving the elucidation of the sequence and positions of two introns. This compact vertebrate genome has demonstrated its value as a tool for the analysis of genes at the genomic level.
Collapse
Affiliation(s)
- E H Lim
- Department of Medicine, Addenbrookes Hospital, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A 1996; 93:1418-22. [PMID: 8643646 PMCID: PMC39953 DOI: 10.1073/pnas.93.4.1418] [Citation(s) in RCA: 364] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sterigmatocystin (ST) and the aflatoxins (AFs), related fungal secondary metabolites, are among the most toxic, mutagenic, and carcinogenic natural products known. The ST biosynthetic pathway in Aspergillus nidulans is estimated to involve at least 15 enzymatic activities, while certain Aspergillus parasiticus, Aspergillus flavus, and Aspergillus nomius strains contain additional activities that convert ST to AF. We have characterized a 60-kb region in the A. nidulans genome and find it contains many, if not all, of the genes needed for ST biosynthesis. This region includes verA, a structural gene previously shown to be required for ST biosynthesis, and 24 additional closely spaced transcripts ranging in size from 0.6 to 7.2 kb that are coordinately induced only under ST-producing conditions. Each end of this gene cluster is demarcated by transcripts that are expressed under both ST-inducing and non-ST-inducing conditions. Deduced polypeptide sequences of regions within this cluster had a high percentage of identity with enzymes that have activities predicted for ST/AF biosynthesis, including a polyketide synthase, a fatty acid synthase (alpha and beta subunits), five monooxygenases, four dehydrogenases, an esterase, an 0-methyltransferase, a reductase, an oxidase, and a zinc cluster DNA binding protein. A revised system for naming the genes of the ST pathway is presented.
Collapse
Affiliation(s)
- D W Brown
- Department of Plant Pathology, Texas A&M University, College Station 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen CJ, Traugh JA. Expression of recombinant elongation factor 1 beta from rabbit in Escherichia coli. Phosphorylation by casein kinase II. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:303-11. [PMID: 8547318 DOI: 10.1016/0167-4781(95)00166-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The beta subunit of eukaryotic elongation factor 1 (EF-1) catalyzes the GDP/GTP exchange activity on EF-1 alpha. In these studies, two cDNAs for the beta subunit of EF-1 from rabbit are cloned and sequenced. The cDNAs consist of 808 and 798 bp and are identical except for the 5' leader sequences of 67 and 57 bp. Both cDNAs code for a protein of 225 amino acids. Using the pT7-7 expression vector, EF-1 beta was expressed in Escherichia coli and purified to apparent homogeneity by chromatography on DEAE-cellulose and FPLC on Superose 12 and Mono Q. EF-1 beta was highly phosphorylated by casein kinase II, with up to 1.3 mol of phosphate incorporated per mol protein. From microsequence analysis and manual Edman degradation, the majority of the phosphate was shown to be present in serine 106 in the peptide DLFGS106DDEEES112EEA. Serine 112 was also phosphorylated by casein kinase II, but to a lesser extent. Previously, little phosphorylation of the beta subunit by casein kinase II was observed in native EF-1 unless GDP was bound to the alpha subunit (Palen, E., Venema, R.C., Chang, Y-W.E. and Traugh, J.A. (1994) Biochemistry, 8515-8520). In contrast, purified recombinant EF-1 beta was highly and specifically phosphorylated by casein kinase II; GDP and polylysine had little effect on the rate of phosphorylation of the purified subunit.
Collapse
Affiliation(s)
- C J Chen
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | |
Collapse
|
10
|
Janssen GM, van Damme HT, Kriek J, Amons R, Möller W. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31709-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Kinzy TG, Ripmaster TL, Woolford JL. Multiple genes encode the translation elongation factor EF-1 gamma in Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:2703-7. [PMID: 8041634 PMCID: PMC308230 DOI: 10.1093/nar/22.13.2703] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.
Collapse
Affiliation(s)
- T G Kinzy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | | |
Collapse
|
12
|
Keller NP, Kantz NJ, Adams TH. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl Environ Microbiol 1994; 60:1444-50. [PMID: 8017929 PMCID: PMC201501 DOI: 10.1128/aem.60.5.1444-1450.1994] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST.
Collapse
Affiliation(s)
- N P Keller
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| | | | | |
Collapse
|
13
|
DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8247005 DOI: 10.1128/mcb.13.12.7901] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify Saccharomyces cerevisiae mutants defective in assembly or function of ribosomes, a collection of cold-sensitive strains generated by treatment with ethyl methanesulfonate was screened by sucrose gradient analysis for altered ratios of free 40S to 60S ribosomal subunits or qualitative changes in polyribosome profiles. Mutations defining seven complementation groups deficient in ribosomal subunits, drs1 to drs7, were identified. We have previously shown that DRS1 encodes a putative ATP-dependent RNA helicase necessary for assembly of 60S ribosomal subunits (T. L. Ripmaster, G. P. Vaughn, and J. L. Woolford, Jr., Proc. Natl. Acad. Sci. USA 89:11131-11135, 1992). Strains bearing the drs2 mutation process the 20S precursor of the mature 18S rRNA slowly and are deficient in 40S ribosomal subunits. Cloning and sequencing of the DRS2 gene revealed that it encodes a protein similar to membrane-spanning Ca2+ ATPases. The predicted amino acid sequence encoded by DRS2 contains seven transmembrane domains, a phosphate-binding loop found in ATP- or GTP-binding proteins, and a seven-amino-acid sequence detected in all classes of P-type ATPases. The cold-sensitive phenotype of drs2 is suppressed by extra copies of the TEF3 gene, which encodes a yeast homolog of eukaryotic translation elongation factor EF-1 gamma. Identification of gene products affecting ribosome assembly and function among the DNAs complementing the drs mutations validates the feasibility of this approach.
Collapse
|
14
|
Bec G, Kerjan P, Waller J. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42139-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Ripmaster TL, Vaughn GP, Woolford JL. DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:7901-12. [PMID: 8247005 PMCID: PMC364862 DOI: 10.1128/mcb.13.12.7901-7912.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To identify Saccharomyces cerevisiae mutants defective in assembly or function of ribosomes, a collection of cold-sensitive strains generated by treatment with ethyl methanesulfonate was screened by sucrose gradient analysis for altered ratios of free 40S to 60S ribosomal subunits or qualitative changes in polyribosome profiles. Mutations defining seven complementation groups deficient in ribosomal subunits, drs1 to drs7, were identified. We have previously shown that DRS1 encodes a putative ATP-dependent RNA helicase necessary for assembly of 60S ribosomal subunits (T. L. Ripmaster, G. P. Vaughn, and J. L. Woolford, Jr., Proc. Natl. Acad. Sci. USA 89:11131-11135, 1992). Strains bearing the drs2 mutation process the 20S precursor of the mature 18S rRNA slowly and are deficient in 40S ribosomal subunits. Cloning and sequencing of the DRS2 gene revealed that it encodes a protein similar to membrane-spanning Ca2+ ATPases. The predicted amino acid sequence encoded by DRS2 contains seven transmembrane domains, a phosphate-binding loop found in ATP- or GTP-binding proteins, and a seven-amino-acid sequence detected in all classes of P-type ATPases. The cold-sensitive phenotype of drs2 is suppressed by extra copies of the TEF3 gene, which encodes a yeast homolog of eukaryotic translation elongation factor EF-1 gamma. Identification of gene products affecting ribosome assembly and function among the DNAs complementing the drs mutations validates the feasibility of this approach.
Collapse
Affiliation(s)
- T L Ripmaster
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | |
Collapse
|
16
|
Momoi H, Yamada H, Ueguchi C, Mizuno T. Sequence of a fission yeast gene encoding a protein with extensive homology to eukaryotic elongation factor-1 gamma. Gene 1993; 134:119-22. [PMID: 8244022 DOI: 10.1016/0378-1119(93)90184-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A polypeptide with an apparent molecular mass of 23 kDa was identified, that exhibited an affinity to a 491-bp DNA derived from one of the Schizosaccharomyces pombe centromeric DNAs (cen1). After determining its N-terminal amino acid (aa) sequence, a Sz. pombe genomic DNA encompassing the coding sequence of the isolated protein was cloned, and a 2.3-kb genomic DNA region sequenced. Further sequence analysis of cDNA clones, originating from this particular genomic region, confirmed the existence of an open reading frame with a short intron, which encodes a 409-aa protein with striking homology to eukaryotic elongation factor-1 gamma.
Collapse
Affiliation(s)
- H Momoi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
17
|
Billaut-Mulot O, Pommier V, Schöneck R, Plumas-Marty B, Taibi A, Loyens M, Capron A, Ouaissi MA. Nucleotide sequence of a Trypanosoma cruzi cDNA encoding a protein homologous to mammalian EF1 gamma. Nucleic Acids Res 1993; 21:3901. [PMID: 8367313 PMCID: PMC309928 DOI: 10.1093/nar/21.16.3901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- O Billaut-Mulot
- Research Laboratory on Trypanosomatids, INSERM U167 Institut Pasteur, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kambouris NG, Burke DJ, Creutz CE. Cloning and genetic characterization of a calcium- and phospholipid-binding protein from Saccharomyces cerevisiae that is homologous to translation elongation factor-1 gamma. Yeast 1993; 9:151-63. [PMID: 8465602 DOI: 10.1002/yea.320090206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have isolated a gene (CAM1) from the yeast Saccharomyces cerevisiae that encodes a protein homologous to the translational cofactor elongation factor-1 gamma (EF-1 gamma) first identified in the brine shrimp Artemia salina. The predicted Cam1 amino acid sequence consists of 415 residues that share 32% identity with the Artemia protein, increasing to 72% when conservative substitutions are included. The calculated M(r) of Cam1p (47,092 Da) is in close agreement with that of EF-1 gamma (M(r) = 49,200 Da), and hydropathy plots of each protein exhibit strikingly similar profiles. Disruption of the CAM1 locus yields four viable meiotic progeny, indicating that under normal growth conditions the Cam1 protein is non-essential. Attempts to elicit a translational phenotype have been unsuccessful. Since EF-1 gamma participates in the regulation of a GTP-binding protein (EF-1 alpha), double mutants with cam1 disruptions and various mutant alleles of known GTP-binding proteins were constructed and examined. No evidence was found for an interaction of CAM1 with TEF1, TEF2, SEC4, YPT1, RAS1, RAS2, CDC6, ARF1, ARF2 or CIN4. The possibility that Cam1p may play a redundant role in the regulation of protein synthesis or another GTP-dependent process is discussed.
Collapse
Affiliation(s)
- N G Kambouris
- Department of Pharmacology, University of Virginia, Charlottesville 22903
| | | | | |
Collapse
|
19
|
Sanders J, Maassen JA, Möller W. Elongation factor-1 messenger-RNA levels in cultured cells are high compared to tissue and are not drastically affected further by oncogenic transformation. Nucleic Acids Res 1992; 20:5907-10. [PMID: 1461723 PMCID: PMC334453 DOI: 10.1093/nar/20.22.5907] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Copy-DNA clones covering the complete coding sequence of human Elongation Factor-1 gamma mRNA have been isolated and characterized. The expression of Elongation Factor-1 in a variety of cell lines and a number of tissues shows a large increase in Elongation Factor-1 mRNA going from tissue to cultured cells (20-fold). Messenger-RNA levels for Elongation Factor-1 alpha, -1 beta and -1 gamma increase in parallel suggesting coordinate regulation of the expression of these genes. Oncogenic transformation in vitro does not strongly affect Elongation Factor-1 mRNA levels.
Collapse
Affiliation(s)
- J Sanders
- Department of Medical Biochemistry, Sylvius Laboratory, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
20
|
Sheu GT, Traugh JA. Nucleotide sequence of a rabbit cDNA encoding elongation factor 1 gamma. Nucleic Acids Res 1992; 20:5849. [PMID: 1454551 PMCID: PMC334436 DOI: 10.1093/nar/20.21.5849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- G T Sheu
- Department of Biochemistry, University of California, Riverside 92521
| | | |
Collapse
|
21
|
Abstract
This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions.
Collapse
Affiliation(s)
- W C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
22
|
Beltrán C, Kopecky J, Pan YC, Nelson H, Nelson N. Cloning and mutational analysis of the gene encoding subunit C of yeast vacuolar H(+)-ATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48351-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Cormier P, Osborne HB, Morales J, Bassez T, Poulhe R, Mazabraud A, Mulner-Lorillon O, Bellé R. Molecular cloning of Xenopus elongation factor 1 gamma, major M-phase promoting factor substrate. Nucleic Acids Res 1991; 19:6644. [PMID: 1754404 PMCID: PMC329242 DOI: 10.1093/nar/19.23.6644] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- P Cormier
- INRA, UA CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A major substrate of maturation promoting factor identified as elongation factor 1 beta gamma delta in Xenopus laevis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98559-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
van Damme H, Amons R, Janssen G, Möller W. Mapping the functional domains of the eukaryotic elongation factor 1 beta gamma. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:505-11. [PMID: 2026171 DOI: 10.1111/j.1432-1033.1991.tb15938.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional domains of the eukaryotic elongation factor (EF) 1 beta gamma have been delineated with the use of limited proteolysis, protein microsequencing, gel electrophoresis under non-denaturing conditions and antibodies against EF-1 beta and EF-1 gamma. By means of limited proteolysis, it was possible to obtain large fragments of EF-1 beta. In contrast to amino-terminal fragments, those derived from the carboxy-terminal part of EF-1 beta were still active in enhancing the guanine nucleotide exchange of GDP bound to EF-1 alpha. With the same technique of limited proteolysis, it was possible to isolate a trypsin-resistant core from EF-1 beta gamma containing polypeptide chain fragments derived from both subunits. A polyvalent antiserum against EF-1 beta and two monoclonal antibodies against EF-1 gamma were used to identify the protein fragments in this core. The monoclonal antibodies were shown to recognize different epitopes, one localized on the amino-terminal and another on the carboxy-terminal half of EF-1 gamma. The antiserum against EF-1 beta and one of the monoclonal antibodies (mAb 36E5), which recognized the amino-terminal half of EF-1 gamma, reacted with this trypsin-resistant core. We conclude that the amino-terminal halves of both EF-1 beta and EF-1 gamma are firmly attached to each other, and that the carboxy-terminal part of EF-1 beta interacts with EF-1 alpha.
Collapse
Affiliation(s)
- H van Damme
- Department of Medical Biochemistry, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
26
|
Fett R, Knippers R. The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions, and homologies with translation elongation factors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52315-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Nygård O, Nilsson L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:1-17. [PMID: 2199194 DOI: 10.1111/j.1432-1033.1990.tb19087.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- O Nygård
- Department of Cell Biology, Wenner-Gren Institute, University of Stockholm, Sweden
| | | |
Collapse
|
28
|
|
29
|
Bellé R, Derancourt J, Poulhe R, Capony JP, Ozon R, Mulner-Lorillon O. A purified complex from Xenopus oocytes contains a p47 protein, an in vivo substrate of MPF, and a p30 protein respectively homologous to elongation factors EF-1 gamma and EF-1 beta. FEBS Lett 1989; 255:101-4. [PMID: 2676593 DOI: 10.1016/0014-5793(89)81069-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A high molecular mass complex isolated from Xenopus laevis oocytes contains three main proteins, respectively p30, p36 and p47. The p47 protein has been reported to be an in vivo substrate of the cell division control protein kinase p34cdc2. From polypeptide sequencing, we now show that the p30 and the p47 correspond to elongation factor EF-1 beta and EF-1 gamma. Furthermore, the p30 and p36 proteins were phosphorylated in vitro by casein kinase II.
Collapse
Affiliation(s)
- R Bellé
- Laboratoire de Physiologie de la Reproduction, INRA, UA CNRS 555, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Janssen GM, Maessen GD, Amons R, Möller W. Phosphorylation of elongation factor 1 beta by an endogenous kinase affects its catalytic nucleotide exchange activity. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37920-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Janssen GM, Möller W. Elongation factor 1 beta gamma from Artemia. Purification and properties of its subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:119-29. [PMID: 3276514 DOI: 10.1111/j.1432-1033.1988.tb13766.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.
Collapse
Affiliation(s)
- G M Janssen
- Laboratory for Medical Biochemistry, State University of Leiden, The Netherlands
| | | |
Collapse
|