1
|
Wedel N, Bartling D, Herrmann RG. Analysis of cDNA Clones Encoding the Entire Ferredoxin I Precursor Polypeptide from Spinach. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1988.tb00047.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Dittmar J, Schlesier R, Klösgen RB. Tat transport of a Sec passenger leads to both completely translocated as well as membrane-arrested passenger proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:446-53. [PMID: 24321767 DOI: 10.1016/j.bbamcr.2013.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We have studied the membrane transport of the chimeric precursor protein 16/33, which is composed of the Tat(1)-specific transport signal of OEC16 and the Sec passenger protein OEC33, both subunits of the oxygen-evolving system associated with photosystem II. Protein transport experiments performed with isolated pea thylakoids show that the 16/33 chimera is transported in a strictly Tat-dependent manner into the thylakoid vesicles yielding mature OEC33 (mOEC33) in two different topologies. One fraction accumulates in the thylakoid lumen and is thus resistant to externally added protease. A second fraction is arrested during transport in an N-in/C-out topology within the membrane. Chase experiments demonstrate that this membrane-arrested mOEC33 moiety does not represent a translocation intermediate but instead an alternative end product of the transport process. Transport arrest of mOEC33, which is embedded in the membrane with a mildly hydrophobic protein segment, requires more than 26 additional and predominantly hydrophilic residues C-terminal of the membrane-embedded segment. Furthermore, it is stimulated by mutations which potentially affect the conformation of mOEC33 suggesting that at least partial folding of the passenger protein is required for complete membrane translocation.
Collapse
Affiliation(s)
- Julia Dittmar
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - René Schlesier
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology-Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| |
Collapse
|
3
|
The extrinsic proteins of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:121-42. [PMID: 21801710 DOI: 10.1016/j.bbabio.2011.07.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/08/2023]
Abstract
In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn(4)CaO(5) cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
4
|
Zörb C, Herbst R, Forreiter C, Schubert S. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 2009; 9:4209-20. [DOI: 10.1002/pmic.200800791] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa NS, Agrawal GK, Rakwal R. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 2008; 28:4369-81. [PMID: 17987633 DOI: 10.1002/elps.200700219] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.
Collapse
|
6
|
Gao JP, Yong ZH, Zhang F, Ruan KC, Xu CH, Chen GY. Positive charges on lysine residues of the extrinsic 18 kDa protein are important to its electrostatic interaction with spinach photosystem II membranes. Acta Biochim Biophys Sin (Shanghai) 2005; 37:737-42. [PMID: 16270152 DOI: 10.1111/j.1745-7270.2005.00103.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N-succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.
Collapse
Affiliation(s)
- Jin-Peng Gao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
7
|
Balsera M, Menéndez M, Sáiz JL, de Las Rivas J, Andreu JM, Arellano JB. Structural Stability of the PsbQ Protein of Higher Plant Photosystem II. Biochemistry 2004; 43:14171-9. [PMID: 15518567 DOI: 10.1021/bi048369e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (DeltaG(D)) at 20 degrees C extrapolated from GdnHCl (4.0 +/- 0.6 kcal mol(-1)) or thermal unfolding (4.4 +/- 0.8 kcal mol(-1)) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 degrees C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 degrees C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 degrees C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 degrees C, the PsbQ protein is a monomer with an elongated shape.
Collapse
Affiliation(s)
- Mónica Balsera
- Instituto de Recursos Naturales y Agrobiología (CSIC), Cordel de Merinas 52, 37008 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I. Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. ACTA ACUST UNITED AC 2004; 271:962-71. [PMID: 15009208 DOI: 10.1111/j.1432-1033.2004.03998.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061].
Collapse
Affiliation(s)
- Akihiko Tohri
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen JR, Enami I. Extrinsic proteins of photosystem II. ACTA ACUST UNITED AC 2003; 270:4156-63. [PMID: 14519128 DOI: 10.1046/j.1432-1033.2003.03810.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oxygen-evolving photosystem II (PS II) complex of red algae contains four extrinsic proteins of 12 kDa, 20 kDa, 33 kDa and cyt c-550, among which the 20 kDa protein is unique in that it is not found in other organisms. We cloned the gene for the 20-kDa protein from a red alga Cyanidium caldarium. The gene consists of a leader sequence which can be divided into two parts: one for transfer across the plastid envelope and the other for transfer into thylakoid lumen, indicating that the gene is encoded by the nuclear genome. The sequence of the mature 20-kDa protein has low but significant homology with the extrinsic 17-kDa (PsbQ) protein of PS II from green algae Volvox Carteri and Chlamydomonas reinhardtii, as well as the PsbQ protein of higher plants and PsbQ-like protein from cyanobacteria. Cross-reconstitution experiments with combinations of the extrinsic proteins and PS IIs from the red alga Cy. caldarium and green alga Ch. reinhardtii showed that the extrinsic 20-kDa protein was functional in place of the green algal 17-kDa protein on binding to the green algal PS II and restoration of oxygen evolution. From these results, we conclude that the 20-kDa protein is the ancestral form of the extrinsic 17-kDa protein in green algal and higher plant PS IIs. This provides an important clue to the evolution of the oxygen-evolving complex from prokaryotic cyanobacteria to eukaryotic higher plants. The gene coding for the extrinsic 20-kDa protein was named psbQ' (prime).
Collapse
Affiliation(s)
- Hisataka Ohta
- Department of Biology, Faculty of Science Tissue Engineering Research Center, Tokyo University of Science, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Balsera M, Arellano JB, Gutiérrez JR, Heredia P, Revuelta JL, De Las Rivas J. Structural analysis of the PsbQ protein of photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods. Biochemistry 2003; 42:1000-7. [PMID: 12549920 DOI: 10.1021/bi026575l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.
Collapse
Affiliation(s)
- Mónica Balsera
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Cordel de Merinas 52, Salamanca 37008, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Suzuki T, Minagawa J, Tomo T, Sonoike K, Ohta H, Enami I. Binding and functional properties of the extrinsic proteins in oxygen-evolving photosystem II particle from a green alga, Chlamydomonas reinhardtii having his-tagged CP47. PLANT & CELL PHYSIOLOGY 2003; 44:76-84. [PMID: 12552150 DOI: 10.1093/pcp/pcg010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxygen-evolving photosystem II (PSII) particles were purified from Chlamydomonas reinhardtii having His-tag extension at the C terminus of the CP47 protein, by a single-step Ni(2+)-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. The PSII particles consisted of, in addition to intrinsic proteins, three extrinsic proteins of 33, 23 and 17 kDa. The preparation showed a high oxygen-evolving activity of 2,300-2,500 micro mol O(2) (mg Chl)(-1) h(-1) in the presence of Ca(2+) using ferricyanide as the electron acceptor, while its activity was 680-720 micro mol O(2) (mg Chl)(-1) h(-1) in the absence of Ca(2+) and Cl(-) ions. The activity was 710-820 micro mol O(2) (mg Chl)(-1) h(-1) independent of the presence or absence of Ca(2+) and Cl(-) when 2,6-dichloro-p-benzoquinone was used as the acceptor. These activities were scarcely inhibited by DCMU. The kinetics of flash-induced fluorescence decay revealed that the electron transfer from Q(A)(-) to Q(B) was significantly inhibited, and the electron transfer from Q(A)(-) to ferricyanide was largely stimulated in the presence of Ca(2+). These results indicate that the acceptor side, Q(B) site, was altered in the PSII particles but its donor side remained intact. Release-reconstitution experiments revealed that the extrinsic 23 and 17 kDa proteins were released only partially by NaCl-wash, while most of the three extrinsic proteins were removed when treated with urea/NaCl, alkaline Tris or CaCl(2). The 23 and 17 kDa proteins directly bound to PSII independent of the other extrinsic proteins, and the 33 kDa protein functionally re-bound to CaCl(2)-treated PSII which had been reconstituted with the 23 and 17 kDa proteins. These binding properties were largely different from those of the extrinsic proteins in higher plant PSII, and suggest that each of the three extrinsic proteins has their own binding sites independent of the others in the green algal PSII.
Collapse
Affiliation(s)
- Takehiro Suzuki
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601 Japan
| | | | | | | | | | | |
Collapse
|
12
|
Wedel N, Klein R, Ljungberg U, Andersson B, Herrmann RG. The single-copy genepsbScodes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. FEBS Lett 2001; 314:61-6. [PMID: 1360412 DOI: 10.1016/0014-5793(92)81462-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant phages that encode the complete precursor polypeptide for the 22 kDa polypeptide associated with photosystem II have been serologically selected from two lambda gt11 expression libraries made from polyadenylated RNA of spinach seedlings. The cDNAs hybridize to a 1.3 kb RNA species. The precursor protein is comprised of 274 amino acid residues and carries an N-terminal transit peptide of probably 69 amino acid residues. The mature protein exhibits four predicted transmembrane segments and is shown to be an integral component of photosystem II originating in a single-copy gene. The unique characteristics of this protein are: (i) it is the result of a gene-internal duplication of an ancestor with two membrane spans, (ii) a striking resemblance to LHC I/II, CP24/CP29 apoproteins, and ELIPs, although it does not bind chlorophyll and is present in cyanobacteria, and, as these proteins, (iii) it integrates into the membrane with uncleaved routing signals that display remarkable resemblance to patterns found in bipartite transit peptides.
Collapse
Affiliation(s)
- N Wedel
- Botanisches Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | |
Collapse
|
13
|
Murata N, Miyao M, Hayashida N, Hidaka T, Sugiura M. Identification of a new gene in the chloroplast genome encoding a low-molecular-mass polypeptide of photosystem II complex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)81280-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Schröder WP, Henrysson T, Åkerlund HE. Characterization of low molecular mass proteins of photosystem II by N-terminal sequencing. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)81281-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Abstract
▪ Abstract The assembly of the photosynthetic apparatus at the thylakoid begins with the targeting of proteins from their site of synthesis in the cytoplasm or stroma to the thylakoid membrane. Plastid-encoded proteins are targeted directly to the thylakoid during or after synthesis on plastid ribosomes. Nuclear-encoded proteins undergo a two-step targeting process requiring posttranslational import into the organelle from the cytoplasm and subsequent targeting to the thylakoid membrane. Recent investigations have revealed a single general import machinery at the envelope that mediates the direct transport of preproteins from the cytoplasm to the stroma. In contrast, at least four distinct pathways exist for the targeting of proteins to the thylakoid membrane. At least two of these systems are homologous to translocation systems that operate in bacteria and at the endoplasmic reticulum, indicating that elements of the targeting mechanisms have been conserved from the original prokaryotic endosymbiont.
Collapse
Affiliation(s)
- Danny J. Schnell
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102; e-mail:
| |
Collapse
|
16
|
Zhang H, Ishikawa Y, Yamamoto Y, Carpentier R. Secondary structure and thermal stability of the extrinsic 23 kDa protein of photosystem II studied by Fourier transform infrared spectroscopy. FEBS Lett 1998; 426:347-51. [PMID: 9600264 DOI: 10.1016/s0014-5793(98)00371-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary structure and thermal stability of the extrinsic 23 kDa protein (OEC23) of spinach photosystem II have been characterized in solution between 25 and 75 degrees C using Fourier transform infrared spectroscopy. Quantitative analysis of the amide I band (1700-1600 cm(-1)) shows that OEC23 contains 5% alpha-helix, 37% beta-sheet, 24% turn, and 34% disorder structures at 25 degrees C. No appreciable conformational changes occur below 45 degrees C. At elevated temperatures, the beta-sheet structure is unfolded into the disorder structure with a major conformational transition occurring at 55 degrees C. Implications of these results for the functions of OEC23 in photosystem II are discussed.
Collapse
Affiliation(s)
- H Zhang
- Groupe de Recherche en Energie et Information Biomoléculaires, Université du Québec à Trois-Rivières, Canada
| | | | | | | |
Collapse
|
17
|
Hankamer B, Barber J, Boekema EJ. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. ACTA ACUST UNITED AC 1997; 48:641-671. [PMID: 15012277 DOI: 10.1146/annurev.arplant.48.1.641] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as well as the function of its constituent subunits. The understanding of in vivo organization of PSII is based in part on freeze-etched and freeze-fracture images of thylakoid membranes. These images show a resolution of about 40-50 A and so provide information mainly on the localization, heterogeneity, dimensions, and shapes of membrane-embedded PSII complexes. Higher resolution of about 15-40 A has been obtained from single particle images of isolated PSII complexes of defined and differing subunit composition and from electron crystallography of 2-D crystals. Observations are discussed in terms of the oligomeric state and subunit organization of PSII and its antenna components.
Collapse
Affiliation(s)
- Ben Hankamer
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom, Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG The Netherlands
| | | | | |
Collapse
|
18
|
Brink S, Bogsch EG, Mant A, Robinson C. Unusual characteristics of amino-terminal and hydrophobic domains in nuclear-encoded thylakoid signal peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:340-8. [PMID: 9151962 DOI: 10.1111/j.1432-1033.1997.00340.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thylakoid transfer signals carry information specifying translocation by either a Sec- or delta pH-dependent protein translocator in the chloroplast thylakoid membrane, yet all resemble classical signal peptides in overall structural terms. Comparison of known transfer signals reveals two differences: (a) signals for the delta pH-driven system invariably contain a critical twin-arginine (Arg-Arg) motif prior to the hydrophobic (H) domain, whereas known Sec-dependent signals contain lysine, and (b) the H-domains of Sec-dependent signals are generally longer. Previous work has shown that a twin-Arg motif before the H-domain is critical for targeting by the delta pH-dependent pathway; in this report we show that the charge characteristics of this region are not important for sorting by the Sec pathway. Twin-Lys, twin-Arg or single Arg are all acceptable to the Sec system, although single Lys/Arg is preferred. The single Lys in pre-plastocyanin can even be replaced by an uncharged residue without apparent effect. We have also generated a pre-plastocyanin mutant containing an H-domain which, in terms of hydropathy profile, is identical to that of a delta pH-dependent protein. This mutant is also transported efficiently by the Sec system, demonstrating that hydrophobicity per se is not a key sorting determinant. However, the characteristics of the H-domain may be important in avoiding a different form of mis-targeting: to the endoplasmic reticulum. Thylakoid signal peptides have undergone substantial structural changes during the evolution of the chloroplast from endosymbiotic cyanobacterium: plastid-encoded and cyanobacterial signals contain H-domains that are highly hydrophobic and enriched in Leu and aromatic residues, whereas nuclear-encoded counterparts are Ala-rich and far less hydrophobic. We speculate that this trend may reflect a need to avoid mistargeting through recognition by cytosolic signal recognition particle, which preferentially interacts with more hydrophobic signal peptides.
Collapse
Affiliation(s)
- S Brink
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- A Seidler
- Séction de Bioénergétique (CNRS URA 1290), Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen JR. Isolation and characterization of a Photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:208-16. [PMID: 8534673 DOI: 10.1016/0005-2728(95)00122-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A Photosystem II (PS II) complex was purified from an acidophilic as well as a thermophilic red alga, Cyanidium caldarium. The purified PS II complex was essentially devoid of phycobiliproteins and other contaminating components, and showed a high oxygen-evolving activity of 2375 mumol O2/mg Chl per h using phenyl-p-benzoquinone as the electron acceptor. The expression of this high activity did not require addition of exogenous Ca2+, although EDTA reduced the activity by 40%. This effect of EDTA can be reversed not only by Ca2+ but also by Mg2+; a similar Mg2+ effect has been observed in purified cyanobacterial PS II but not in higher plant PS II. Immunoblotting analysis indicated the presence of major intrinsic polypeptides commonly found in PS II from cyanobacteria and higher plants as well as the extrinsic 33 kDa protein. Antibodies against the extrinsic 23 and 17 kDa proteins of higher plant PS II, however, did not crossreact with any polypeptides in the purified PS II, indicating the absence of these proteins in the red alga. In contrast, two other extrinsic proteins of 17 and 12 kDa were present in the red algal PS II; they were released by 1 M Tris or Urea/NaCl treatment but not by 1 M NaCl. The 17 kDa polypeptide was identified to be cytochrome c-550 from heme-staining, immunoblot analysis and N-terminal amino acid sequencing, and the 12 kDa protein was found to be homologous to the 12 kDa extrinsic protein of cyanobacterial PS II from its N-terminal sequence. These results indicate that PS II from the red alga is closely related to PS II from cyanobacteria rather than to that from higher plants, and that the replacement of PS II extrinsic cytochrome c-550 and the 12 kDa protein by the extrinsic 23 and 17 kDa proteins occurred during evolution from red algae to green algae and higher plants.
Collapse
Affiliation(s)
- I Enami
- Department of Biology, Faculty of Science, Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WF, Renger G. Involvement of the CP47 protein in stabilization and photoactivation of a functional water-oxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 1995; 34:6847-56. [PMID: 7756315 DOI: 10.1021/bi00020a031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oscillation patterns of the oxygen yield per flash induced by a train of single-turnover flashes were measured as a function of dark incubation and different pre-illumination conditions in several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions within the large, lumen-exposed hydrophilic region (loop E) of the chlorophyll a-binding photosystem II protein CP47. A physiological and biochemical characterization of these mutant strains has been presented previously [Eaton-Rye, J. J., & Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J. J., Renger, G., & Vermaas, W. F. J. (1993) Biochemistry 32, 4444-4454], and some functional properties were described recently [Gleiter, H. M., Haag, E., Shen, J.-R., Eaton-Rye, J. J., Inoue, Y., Vermaas, W. F. J., & Renger, G. (1994) Biochemistry 33, 12063-12071]. The present study shows that in several mutants the water-oxidizing complex (WOC) became inactivated during prolonged dark incubation, whereas the WOC of the wild-type strain remained active. The rate and extent of the inactivation in the mutants depend on the domain of loop E, where 3-8 amino acid residues were deleted. The most pronounced effects are observed in mutants delta(A373-D380) and delta(R384-V392). A competent WOC can be restored from the fully inactivated state by illumination with short saturating flashes. The number of flashes required for this process strongly depends on the site at which a deletion has been introduced into loop E. Again, the most prominent effects were found in mutants delta(A373-D380) and delta(R384-V392). Interestingly, the number of flashes required for activation was reduced by more than an order of magnitude in both mutants by the addition of 10 mM CaCl2 to the cell suspension. On the basis of a model for photoactivation proposed by Tamura and Cheniae (1987) [Biochim. Biophys. Acta 890, 179-194], a scheme is presented for the processes of dark inactivation and photoactivation in these mutants. The results presented here corroborate an important role of the large hydrophilic domain (loop E) of CP47 in a functional and stable WOC.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer-Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
The thylakoid translocation of subunit 3 of photosystem I, the psaF gene product, depends on a bipartite transit peptide and proceeds along an azide-sensitive pathway. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30072-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Scott MP, Nielsen VS, Knoetzel J, Andersen R, Møller BL. Import of the barley PSI-F subunit into the thylakoid lumen of isolated chloroplasts. PLANT MOLECULAR BIOLOGY 1994; 26:1223-1229. [PMID: 7811981 DOI: 10.1007/bf00040704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A full-length cDNA clone encoding the PSI-F subunit of barley photosystem I has been isolated and sequenced. The open reading frame encodes a precursor polypeptide with a deduced molecular mass of 24837 Da. The barley PSI-F precursor contains a bipartite presequence with characteristics similar to the presequences of proteins destined to the thylakoid lumen. In vitro import studies demonstrate that an in vitro synthesized precursor is transported across the chloroplast envelope and directed to the thylakoid membrane, where it accumulates in a protease-resistant form. Incubation of the precursor with a chloroplast stromal extract results in processing to a form intermediate in size between the precursor and mature forms. Hydrophobicity analysis of the barley PSI-F protein reveals a hydrophobic region predicted to be a membrane spanning alpha-helix. The hydrophobic nature of PSI-F combined with a bipartite presequence is unusual. We postulate that the second domain in the bipartite presequence of the PSI-F precursor proteins is required to ensure the proper orientation of PSI-F in the thylakoid membrane. The expression of the PsaF gene is light-induced similar to other barley photosystem I genes.
Collapse
Affiliation(s)
- M P Scott
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Pessino S, Caelles C, Puigdomènech P, Vallejos RH. Structure and characterization of the gene encoding the ferredoxin-NADP reductase-binding protein from Zea mays L. Gene X 1994; 147:205-8. [PMID: 7926800 DOI: 10.1016/0378-1119(94)90066-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A genomic clone encoding ferredoxin-NADP reductase binding protein (BP) from Zea mays L. was sequenced and characterized. The promoter region (692 bp) shows several motives resembling those involved in enhancement, tissue-specific expression and light regulation in plants, besides the typical TATA and CAAT boxes. The coding sequence is interrupted by two introns. The deduced amino acid (aa) sequence corresponds to 22.85 kDa for the precursor polypeptide, including a transit peptide of 64 aa and a mature protein of 148 aa.
Collapse
Affiliation(s)
- S Pessino
- Centro de Estudios Fotosintéticos y Bioquímicos (CONICET, F.M. Lillo and Universidad Nacional de Rosario), Rosario, Argentina
| | | | | | | |
Collapse
|
25
|
Seidler A. Expression of the 23 kDa protein from the oxygen-evolving complex of higher plants in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1187:73-9. [PMID: 8061039 DOI: 10.1016/0005-2728(94)90168-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 23 kDa protein from the oxygen-evolving complex of higher plants regulates the binding of one Ca2+ ion, which is an essential cofactor of water splitting. In this report its expression in Escherichia coli is described. The 23 kDa protein was expressed and secreted to the periplasm where it accumulated in a soluble form. After purification by cation exchange chromatography the recombinant protein was found to NaCl-washed Photosystem II. Detailed analysis of oxygen-evolving activity demonstrates its function in Ca2+ binding identical to the spinach 23 kDa protein. This expression system opens the way for mutational analysis and isotopic labelling in order to study its function in water splitting.
Collapse
Affiliation(s)
- A Seidler
- Section de Bioénergétique (CNRS URA 1290), Département de Biologie Cellulaire et Moleculaire, CE Saclay, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Madueño F, Bradshaw S, Gray J. The thylakoid-targeting domain of the chloroplast Rieske iron-sulfur protein is located in the N-terminal hydrophobic region of the mature protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32462-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Bassham D, Creighton A, Karnauchov I, Herrmann R, Klösgen R, Robinson C. Mutations at the stromal processing peptidase cleavage site of a thylakoid lumen protein precursor affect the rate of processing but not the fidelity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33973-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Abstract
Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen.
Collapse
Affiliation(s)
- M M Mackle
- Department of Plant Science, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231
| | | |
Collapse
|
29
|
Hulford A, Hazell L, Mould R, Robinson C. Two distinct mechanisms for the translocation of proteins across the thylakoid membrane, one requiring the presence of a stromal protein factor and nucleotide triphosphates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41855-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Shen J, Inoue Y. Cellular localization of cytochrome c550. Its specific association with cyanobacterial photosystem II. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80743-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Vermaas WF, Styring S, Schröder WP, Andersson B. Photosynthetic water oxidation: The protein framework. PHOTOSYNTHESIS RESEARCH 1993; 38:249-263. [PMID: 24317979 DOI: 10.1007/bf00046750] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/1993] [Accepted: 08/30/1993] [Indexed: 06/02/2023]
Abstract
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl(-) and Ca(2+) ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl(-) requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10-12 kDa subunit and a newly discovered low-potential cytochrome c-550.
Collapse
Affiliation(s)
- W F Vermaas
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:269-352. [PMID: 1390827 DOI: 10.1016/0005-2728(92)90133-m] [Citation(s) in RCA: 970] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California Riverside 92521-0129
| |
Collapse
|
33
|
He WZ, Malkin R. Specific release of a 9-kDa extrinsic polypeptide of photosystem I from spinach chloroplasts by salt washing. FEBS Lett 1992; 308:298-300. [PMID: 1505669 DOI: 10.1016/0014-5793(92)81297-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The newly reported 9-kDa polypeptide in photosystem I [(1991) FEBS Lett. 280, 332-334] is an extrinsic component located on the lumenal side of the thylakoid membrane. This subunit can be solubilized with high salt buffer and does not bind any cofactors. The photosystem I electron transfer chain remains intact and functional in the absence of this component as characterized by the photoreduction of NADP+.
Collapse
Affiliation(s)
- W Z He
- Department of Plant Biology, University of California, Berkeley 94720
| | | |
Collapse
|
34
|
Abstract
A prolyl endopeptidase (PEPase, EC 3.4.21.26) that specifically cleaves the 18-kDa protein of photosystem II was extracted from photosystem II membranes with 1 M NaCl. Proteolytic activity measured with artificial substrates was less than a quarter of that with the protein. Studies on inhibition of the proteolysis by an artificial substrate suggested that the protease recognizes the scissile prolyl bond. The protease was inhibited by CuCl2, but not by diisopropyl fluorophosphate or p-chloromercuriphenylsulfonic acid. These findings suggest that the protease represents a new class of PEPase. The specificity of the enzyme is discussed in relation to the structure of the 18-kDa protein.
Collapse
Affiliation(s)
- T Kuwabara
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
|
36
|
Bassham D, Bartling D, Mould R, Dunbar B, Weisbeek P, Herrmann R, Robinson C. Transport of proteins into chloroplasts. Delineation of envelope “transit” and thylakoid “transfer” signals within the pre-sequences of three imported thylakoid lumen proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54326-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Douwe de Boer A, Weisbeek PJ. Chloroplast protein topogenesis: import, sorting and assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:221-53. [PMID: 1958688 DOI: 10.1016/0304-4157(91)90015-o] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Douwe de Boer
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
38
|
Reinero A, Tobin EM. An amino-proximal hydrophobic domain in the major light-harvesting chlorophyll a/b-protein is essential for membrane integration and protein stability. PHOTOSYNTHESIS RESEARCH 1991; 30:25-33. [PMID: 24415191 DOI: 10.1007/bf00035679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/1991] [Accepted: 08/20/1991] [Indexed: 06/03/2023]
Abstract
The major light-harvesting chlorophyll a/b-protein (LHCP) of higher plant chloroplasts is a nuclearencoded, integral thylakoid membrane protein that binds photosynthetic pigments and occurs in situ in an oligomeric form. We have previously examined structural and functional domains of the mature apoprotein by use of mutant LHCPs and in vitro assays for uptake and insertion. Results presented here demonstrate the effects of several mutations in the amino terminal domain of the mature apoprotein. Deletion of amino acid residues 12-58 greatly affected import into chloroplasts, while deletion or alteration of the hydrophobic region E(65)VIHARWAM(73) led to rapid degradation of the mutant LHCP. We suggest that this amino-proximal region is essential for the stability of the LHCP and its ability to integrate into the thylakoid membranes. A structural/functional relationship of this region to a previously examined hydrophobic carboxy-proximal domain [Kohorn and Tobin (1989), The Plant Cell 1, 159-166] is proposed.
Collapse
Affiliation(s)
- A Reinero
- Biology Department, University of California, 90024-1606, Los Angeles, CA, USA
| | | |
Collapse
|
39
|
Mould R, Robinson C. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98879-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Shackleton J, Robinson C. Transport of proteins into chloroplasts. The thylakoidal processing peptidase is a signal-type peptidase with stringent substrate requirements at the -3 and -1 positions. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98872-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Takahashi H, Ehara Y, Hirano H. A protein in the oxygen-evolving complex in the chloroplast is associated with symptom expression on tobacco leaves infected with cucumber mosaic virus strain Y. PLANT MOLECULAR BIOLOGY 1991; 16:689-98. [PMID: 1868202 DOI: 10.1007/bf00023433] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To elucidate the molecular basis of symptom expression in virus-infected plants, the changes in proteins between tobacco, Nicotiana tabacum cv. Ky57, leaves inoculated with cucumber mosaic virus strain Y [CMV(Y)] and strain O [CMV(O)], were compared by 2-dimensional (2-D) gel electrophoresis. The appearance of chlorotic spots in CMV(Y)-inoculated tobacco leaves accompanied an increase of 3 polypeptides and a decrease in 6 polypeptides, as compared with those in the CMV(O)-inoculated tobacco which showed no clear symptoms. The decrease in the amounts of two polypeptides of 22 and 23 kDa was particularly significant: these two polypeptides were compared with a 24 kDa polypeptide, which co-migrated with them in 2-D gel electrophoresis but did not clearly decrease at an early stage of infection, as well as major other proteins of CMV(Y)-inoculated tobacco leaves. However, the 22, 23 and 24 kDa polypeptides showed the same peptide mapping pattern. Furthermore, the 12 amino acid residues at N-termini of the three polypeptides match those of the extrinsic 23 kDa polypeptide of an oxygen-evolving complex from spinach. A comparative analysis of the 22, 23 and 24 kDa polypeptides in N. tabacum and its ancestral parents, N. sylvestris and N. tomentosiformis, revealed that the 22 kDa polypeptide derives from N. sylvestris and the 23 kDa polypeptide from N. tomentosiformis; the 24 kDa polypeptide derives from both ancestral Nicotiana species. The results indicate that the polypeptides whose amounts differentially decrease with the progress of symptom expression in N. tabacum inoculated with CMV(Y) are one component of the oxygen-evolving complex in photosystem II.
Collapse
Affiliation(s)
- H Takahashi
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
42
|
Hua SB, Dube SK, Barnett NM, Kung SD. Nucleotide sequence of a cDNA clone encoding 23 kDa polypeptide of the oxygen-evolving complex of photosystem II in tobacco, Nicotiana tabacum L. PLANT MOLECULAR BIOLOGY 1991; 16:749-50. [PMID: 1868208 DOI: 10.1007/bf00023442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Affiliation(s)
- S B Hua
- Center for Agricultural Biotechnology, University of Maryland, College Park 20742
| | | | | | | |
Collapse
|
43
|
Johnson EM, Schnabelrauch LS, Sears BB. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:106-12. [PMID: 2000083 DOI: 10.1007/bf00282648] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.
Collapse
Affiliation(s)
- E M Johnson
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
44
|
Reed JE, Cline K, Stephens LC, Bacot KO, Viitanen PV. Early events in the import/assembly pathway of an integral thylakoid protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:33-42. [PMID: 2253622 DOI: 10.1111/j.1432-1033.1990.tb19423.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The light-harvesting chlorophyll a/b protein (LHCP) is nuclear-encoded and must traverse the chloroplast envelope before becoming integrally assembled into thylakoid membranes. Previous studies implicated a soluble stromal form of LHCP in the assembly pathway, but relied upon assays in which the thylakoid insertion step was intentionally impaired [Cline, K., Fulsom, D. R. and Viitanen, P. V. (1989) J. Biol. Chem. 264, 14225-14232]. Here we have developed a rapid-stopping procedure, based upon the use of HgCl2, to analyze early events of the uninhibited assembly process. With this approach, we have found that proper assembly of LHCP into thylakoids lags considerably behind trans-envelope translocation. During the first few minutes of import, two distinct populations of mature-size LHCP accumulate within the chloroplast. One is the aforementioned soluble stromal intermediate, while the other is a partially (or improperly) assembled thylakoid species. Consistent with precursor/product relationships, both species reach peak levels at a time when virtually none of the imported molecules are correctly assembled. These results confirm and extend our previous interpretation, that upon import, preLHCP is rapidly processed to its mature form, giving rise to a soluble stromal intermediate. They further suggest that the stromal intermediate initially inserts into the thylakoid bilayer in a partially assembled form, which eventually becomes properly assembled into the light-harvesting complex.
Collapse
Affiliation(s)
- J E Reed
- Central Research and Development Department, E. I. Du Pont de Nemours and Company, Wilmington, Delaware 19880-0402
| | | | | | | | | |
Collapse
|
45
|
Szczepaniak A, Cramer WA. Thylakoid membrane protein topography. Location of the termini of the chloroplast cytochrome b6 on the stromal side of the membrane. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38223-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Crétin C, Luchetta P, Joly C, Decottignies P, Lepiniec L, Gadal P, Sallantin M, Huet JC, Pernollet JC. Primary structure of sorghum malate dehydrogenase (NADP) deduced from cDNA sequence. Homology with malate dehydrogenase (NAD). EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:299-303. [PMID: 2209586 DOI: 10.1111/j.1432-1033.1990.tb19227.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Malate dehydrogenase (NADP) (NADP-MDH) is an important enzyme of the photosynthetic CO2 fixation pathway of C4 plants. We have isolated two clones from a sorghum lambda gt11 cDNA library (CM3, 932 bp, and CM7, 1441 bp). Nucleotide sequence analysis of the cDNAs CM3 and CM7 showed the existence of two NADP-MDH mRNA species encoding different enzyme subunits. Microsequencing of the N-terminus of the mature protein indicated that a specific cleavage of 13 amino acids occurred during the purification steps of the enzyme. The full-length cDNA CM7 contains a large open reading frame encoding an NH2-terminal transit peptide of 40 amino acids and a mature protein of 389 amino acids (42.207 kDa). Alignment of the NADP-MDH sequence with those of several malate dehydrogenases revealed some similarities with NAD-MDHs.
Collapse
Affiliation(s)
- C Crétin
- Laboratoire de Physiologie Végétale Moléculaire, Université de Paris-Sud, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hansson O, Wydrzynski T. Current perceptions of Photosystem II. PHOTOSYNTHESIS RESEARCH 1990; 23:131-162. [PMID: 24421057 DOI: 10.1007/bf00035006] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/1989] [Accepted: 06/05/1989] [Indexed: 06/03/2023]
Abstract
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385-398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.
Collapse
Affiliation(s)
- O Hansson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, S-412 96, Göteborg, Sweden
| | | |
Collapse
|
48
|
Coleman WJ. Chloride binding proteins: mechanistic implications for the oxygen-evolving complex of Photosystem II. PHOTOSYNTHESIS RESEARCH 1990; 23:1-27. [PMID: 24420988 DOI: 10.1007/bf00030059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/1987] [Accepted: 12/09/1988] [Indexed: 05/13/2023]
Abstract
Chloride plays a key role in activating the photosynethetic oxygen-evolving complex (OEC) of Photosystem II, but the OEC is only one of many enzymes affected by this anion. Some of the mechanistic features of Cl(-) involvement in water-splitting resemble those of other proteins whose structure and chemistry are known in detail. An overview of the similarities and differences between these Cl(-)-binding systems is presented.
Collapse
Affiliation(s)
- W J Coleman
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| |
Collapse
|
49
|
Yamamoto Y. Molecular organization of oxygen-evolution system in chloroplast. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf02488438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Miyao M, Murata N. The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80086-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|