1
|
Cardona T, Rutherford AW. Evolution of Photochemical Reaction Centres: More Twists? TRENDS IN PLANT SCIENCE 2019; 24:1008-1021. [PMID: 31351761 DOI: 10.1016/j.tplants.2019.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 05/27/2023]
Abstract
One of the earliest events in the molecular evolution of photosynthesis is the structural and functional specialisation of type I (ferredoxin-reducing) and type II (quinone-reducing) reaction centres. In this opinion article we point out that the homodimeric type I reaction centre of heliobacteria has a calcium-binding site with striking structural similarities to the Mn4CaO5 cluster of photosystem II. These similarities indicate that most of the structural elements required to evolve water oxidation chemistry were present in the earliest reaction centres. We suggest that the divergence of type I and type II reaction centres was made possible by a drastic structural shift linked to a change in redox properties that coincided with or facilitated the origin of photosynthetic water oxidation.
Collapse
Affiliation(s)
- Tanai Cardona
- Imperial College London, Department of Life Sciences, London, UK. @imperial.ac.uk
| | | |
Collapse
|
2
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:305-19. [PMID: 20165917 DOI: 10.1007/s11120-010-9530-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/16/2010] [Indexed: 05/08/2023]
Abstract
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Unifying principles in homodimeric type I photosynthetic reaction centers: Properties of PscB and the FA, FB and FX iron–sulfur clusters in green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1535-44. [DOI: 10.1016/j.bbabio.2008.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/23/2022]
|
5
|
Roy E, Gast P, van Gorkom H, de Groot HJM, Jeschke G, Matysik J. Photochemically induced dynamic nuclear polarization in the reaction center of the green sulphur bacterium Chlorobium tepidum observed by 13C MAS NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:610-5. [PMID: 17292850 DOI: 10.1016/j.bbabio.2006.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/21/2006] [Accepted: 12/29/2006] [Indexed: 11/30/2022]
Abstract
Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by (13)C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced (13)C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type. The donor in RCs of green sulfur bacteria clearly differs from the substantially asymmetric special pair of purple bacteria and appears to be similar to the more symmetric donor of photosystem I.
Collapse
Affiliation(s)
- Esha Roy
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Garczarek L, Poupon A, Partensky F. Origin and evolution of transmembrane Chl-binding proteins: hydrophobic cluster analysis suggests a common one-helix ancestor for prokaryotic (Pcb) and eukaryotic (LHC) antenna protein superfamilies. FEMS Microbiol Lett 2003; 222:59-68. [PMID: 12757947 DOI: 10.1016/s0378-1097(03)00241-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
All chlorophyll (Chl)-binding proteins constituting the photosynthetic apparatus of both prokaryotes and eukaryotes possess hydrophobic domains, corresponding to membrane-spanning alpha-helices (MSHs). Hydrophobic cluster analysis of representative members of the different Chl protein superfamilies revealed that all Chl proteins except the five-helix reaction center II proteins and the small subunits of photosystem I possess related domains. As a major conclusion, we found that the eukaryotic antennae likely share a common precursor with the prokaryotic Chl a/b antennae from Chl-b-containing oxyphotobacteria. From these data, we propose a global scheme for the evolution of these proteins from a one-MSH ancestor.
Collapse
Affiliation(s)
- Laurence Garczarek
- Centre d'Etudes d'Océanographie et de Biologie Marine, CNRS-UMR 7127 et Université Pierre et Marie Curie, F-29682 Roscoff Cedex, France
| | | | | |
Collapse
|
7
|
Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria(1). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:260-77. [PMID: 11687219 DOI: 10.1016/s0005-2728(01)00200-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.
Collapse
Affiliation(s)
- G Hauska
- Lehstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
8
|
van der Est A. Light-induced spin polarization in type I photosynthetic reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:212-25. [PMID: 11687216 DOI: 10.1016/s0005-2728(01)00204-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of light-induced spin polarization to study the structure and function of type I reaction centres is reviewed. The absorption of light by these systems generates a series of sequential radical pairs, which exhibit spin polarization as a result of the correlation of the unpaired electron spins. A description of how the polarization patterns can be used to deduce the relative orientation of the radicals is given and the most important structural results from such studies on photosystem I (PS I) are summarized. Quinone exchange experiments which demonstrate the influence of protein-cofactor interactions on the polarization patterns are discussed. The results show that there are significant differences between the binding sites of the primary quinone acceptors in PS I and purple bacterial reaction centres and suggest that pi-pi interactions probably play a more important role in PS I. Studies using spin-polarized EPR transients and spectra to investigate the electron transfer pathway and kinetics are also reviewed. The results from PS I, green-sulphur bacteria and Heliobacteria are compared and the controversy surrounding the role of a quinone in the electron transfer in the latter two systems is discussed.
Collapse
Affiliation(s)
- A van der Est
- Department of Chemistry, Brock University, 500 Glenridge Avenue, L2S 3A1, St. Catharines, ON, Canada.
| |
Collapse
|
9
|
Vassiliev IR, Antonkine ML, Golbeck JH. Iron-sulfur clusters in type I reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:139-60. [PMID: 11687212 DOI: 10.1016/s0005-2728(01)00197-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 310 South Frear Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Sétif P, Seo D, Sakurai H. Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria. Biophys J 2001; 81:1208-19. [PMID: 11509338 PMCID: PMC1301603 DOI: 10.1016/s0006-3495(01)75779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iron-sulfur clusters are the terminal electron acceptors of the photosynthetic reaction centers of green sulfur bacteria and photosystem I. We have studied electron-transfer reactions involving these clusters in the green sulfur bacterium Chlorobium tepidum, using flash-absorption spectroscopic measurements. We show for the first time that three different clusters, named F(X), F(1), and F(2), can be photoreduced at room temperature during a series of consecutive flashes. The rates of electron escape to exogenous acceptors depend strongly upon the number of reduced clusters. When two or three clusters are reduced, the escape is biphasic, with the fastest phase being 12-14-fold faster than the slowest phase, which is similar to that observed after single reduction. This is explained by assuming that escape involves mostly the second reducible cluster. Evidence is thus provided for a functional asymmetry between the two terminal acceptors F(1) and F(2). From multiple-flash experiments, it was possible to derive the intrinsic recombination rates between P840(+) and reduced iron-sulfur clusters: values of 7, 14, and 59 s(-1) were found after one, two and three electron reduction of the clusters, respectively. The implications of our results for the relative redox potentials of the three clusters are discussed.
Collapse
Affiliation(s)
- P Sétif
- Commissariat à l'Energie Atomique, Département de Biologie Cellulaire et Moléculaire, Section de Bioénergétique and CNRS URA 2096, 91191 Gif sur Yvette, France.
| | | | | |
Collapse
|
11
|
Schmidt KA, Neerken S, Permentier HP, Hager-Braun C, Amesz J. Electron transfer in reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Biochemistry 2000; 39:7212-20. [PMID: 10852720 DOI: 10.1021/bi992861u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.
Collapse
Affiliation(s)
- K A Schmidt
- Department of Biophysics, Huygens Laboratory, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Vassiliev IR, Ronan MT, Hauska G, Golbeck JH. The bound electron acceptors in green sulfur bacteria: resolution of the g-tensor for the F(X) iron-sulfur cluster in Chlorobium tepidum. Biophys J 2000; 78:3160-9. [PMID: 10827992 PMCID: PMC1300897 DOI: 10.1016/s0006-3495(00)76852-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I). PS I also contains an interpolypeptide [4Fe-4S] cluster named F(X); however, spectroscopic evidence for an analogous iron-sulfur cluster in green sulfur bacteria remains equivocal. To minimize oxidative damage to the iron-sulfur clusters, we studied the sensitivity of F(A) and F(B) to molecular oxygen in whole cells of Chlorobium vibrioforme and Chlorobium tepidum and obtained highly photoactive membranes and RCs from Cb. tepidum by adjusting isolation conditions to maximize the amplitude of the F(A)(-)/F(B)(-) electron paramagnetic resonance signal at g = 1.89 (measured at 126 mW of microwave power and 14 K) relative to the P840(+) signal at g = 2.0028 (measured at 800 microW of microwave power and 14 K). In these optimized preparations we were able to differentiate F(X)(-) from F(A)(-)/F(B)(-) by their different relaxation properties. At temperatures between 4 and 9 K, isolated membranes and RCs of Cb. tepidum show a broad peak at g = 2.12 and a prominent high-field trough at g = 1.76 (measured at 126 mW of microwave power). The complete g-tensor of F(X)(-), extracted by numerical simulation, yields principal values of 2.17, 1.92, and 1. 77 and is similar to F(X) in PS I. An important difference from PS I is that because the bound cytochrome is available as a fast electron donor in Chlorobium, it is not necessary to prereduce F(A) and F(B) to photoaccumulate F(X)(-).
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
13
|
Kusumoto N, Sétif P, Brettel K, Seo D, Sakurai H. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 1999; 38:12124-37. [PMID: 10508417 DOI: 10.1021/bi990452s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.
Collapse
Affiliation(s)
- N Kusumoto
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Muhiuddin IP, Rigby SE, Evans MC, Amesz J, Heathcote P. ENDOR and special TRIPLE resonance spectroscopy of photoaccumulated semiquinone electron acceptors in the reaction centers of green sulfur bacteria and heliobacteria. Biochemistry 1999; 38:7159-67. [PMID: 10353826 DOI: 10.1021/bi982042u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoaccumulation at 205 K in the presence of dithionite produces EPR signals in anaerobically prepared membranes from Chlorobium limicola and Heliobacterium chlorum that resemble the EPR spectrum of phyllosemiquinone (A1*-) photoaccumulated in photosystem I. We have used ENDOR and special TRIPLE resonance spectroscopy to demonstrate conclusively that these signals arise from menasemiquinone electron acceptors reduced by photoaccumulation. Hyperfine couplings to two protons H-bonded to the semiquinone oxygens have been identified by exchange of H. chlorum into D2O, and hyperfine couplings to the methyl group, and the methylene group of the phytyl side chain, of the semiquinone have also been assigned. The electronic structure of these menasemiquinones in these reaction centers is very similar to that of phyllosemiquinone in PSI, and shows a distorted electron spin density distribution relative to that of phyllosemiquinone in vitro. Special TRIPLE resonance spectrometry has been used to investigate the effect of detergents and oxygen on membranes of C. limicola. Triton X-100 and oxygen affect the menaquinone binding site, but n-dodecyl beta-D-maltoside preparations exhibit a relatively unaltered special TRIPLE spectrum for the photoaccumulated menasemiquinone.
Collapse
Affiliation(s)
- I P Muhiuddin
- School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
15
|
Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 1998; 280:297-314. [PMID: 9654453 DOI: 10.1006/jmbi.1998.1824] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4 A structural model of photosystem I (PSI) has elucidated essential features of this protein complex. Inter alia, it demonstrates that the core proteins of PSI, PsaA and PsaB each consist of an N-terminal antenna-binding domain, and a C-terminal reaction center (RC)-domain. A comparison of the RC-domain of PSI and the photosynthetic RC of purple bacteria (PbRC), reveals significantly analogous structures. This provides the structural support for the hypothesis that the two RC-types (I and II) share a common evolutionary origin. Apart from a similar set of constituent cofactors of the electron transfer system, the analogous features include a comparable cofactor arrangement and a corresponding secondary structure motif of the RC-cores. Despite these analogies, significant differences are evident, particularly as regards the distances between and the orientation of individual cofactors, and the length and orientation of alpha-helices. Inferred roles of conserved amino acids are discussed for PSI, photosystem II (PSII), photosystem C (PSC, green sulfur bacteria) and photosystem H (PSH, heliobacteria). Significant sequence homology between the N-terminal, antenna-binding domains of the core proteins of type-I RCs, PsaA, PsaB, PscA and PshA (of PSI, PSC and PSH respectively) with the antenna-binding subunits CP43 and CP47 of PSII indicate that PSII has a modular structure comparable to that of PSI.
Collapse
Affiliation(s)
- W D Schubert
- Institut für Kristallographie, Freie Universität Berlin, Takustr. 6, Berlin, D-14195, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH, Scheller HV. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 1998; 37:3237-42. [PMID: 9536963 DOI: 10.1021/bi973121t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron transport was investigated by electron paramagnetic resonance (EPR) spectroscopy. A highly anisotropic radical was detected by Q-band EPR spectroscopy in both membranes and isolated reaction centers following dark reduction with sodium dithionite and photoaccumulation at 205 K. At 34 GHz, the EPR spectrum is characterized by a g tensor with gxx = 2.0063, gyy = 2.0052, gzz = 2.0020 and delta B of 0.7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to phylloquinone in photosystem I.
Collapse
Affiliation(s)
- B Kjaer
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Albouy D, Sturgis JN, Feiler U, Nitschke W, Robert B. Membrane-associated c-type cytochromes from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum: purification and characterization of cytochrome c553. Biochemistry 1997; 36:1927-32. [PMID: 9048580 DOI: 10.1021/bi962624g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tetraheme cytochromes involved in photosynthetic electron transport have previously been described associated with the reaction centers of purple photosynthetic bacteria; however, similar heme proteins have not until now been characterized in the phylogenetically distinct green sulfur bacteria. In this paper we describe the first isolation and characterization of a multitheme, membrane-associated cytochrome from a green sulfur bacterium, Chlorobium limicola forma thiosulfatophilum. We show that this cytochrome contains a single polypeptide of 32 kDa apparent molecular mass on SDS-PAGE and has a characteristic broad alpha-band absorption at 553 nm. By both low-temperature absorption and electron paramagnetic resonance spectroscopy, we demonstrate that there are at least four distinct heme groups.
Collapse
Affiliation(s)
- D Albouy
- Section de Biophysique des Protéines et des Membranes, DBCM/CEA, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
18
|
Frankenberg N, Hager-Braun C, Feiler U, Fuhrmann M, Rogl H, Schneebauer N, Nelson N, Hauska G. P840-Reaction Centers from Chlorobium tepidum–Quinone Analysis and Functional Reconstitution into Lipid Vesicles. Photochem Photobiol 1996. [DOI: 10.1111/j.1751-1097.1996.tb02415.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
|
20
|
Pierre Y, Breyton C, Kramer D, Popot JL. Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. J Biol Chem 1995; 270:29342-9. [PMID: 7493968 DOI: 10.1074/jbc.270.49.29342] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A protocol has been developed for the purification of the cytochrome b6 f complex from the unicellular alga Chlamydomonas reinhardtii. It is based on the use of the neutral detergent Hecameg (6-O-(N-heptylcarbamoyl)-methyl-alpha-D-glycopyranoside) and comprises only three steps: selective solubilization from thylakoid membranes, sucrose gradient sedimentation, and hydroxylapatite chromatography. The purified complex contains two b hemes (alpha bands, 564 nm; Em,8 = -84 and -158 mV) and one chlorophyll alpha (lambda max = 667-668 nm) per cytochrome f (alpha band, 554 nm; Em,8 = +330 mV). It is highly active in transferring electrons from decylplastoquinol to oxidized plastocyanin (turnover number 250-300 s-1). The purified complex contains seven subunits, whose identity has been established by N-terminal sequencing and/or peptide-specific immunolabeling, namely four high molecular weight subunits (cytochrome f, Rieske iron-sulfur protein, cytochrome b6, and subunit IV) and three approximately 4-kDa miniproteins (PetG, PetL, and PetX). Stoichiometry measurements are consistent with every subunit being present as two copies per b6 f dimer.
Collapse
Affiliation(s)
- Y Pierre
- Institut de Biologie Physico-Chimique, CNRS URA 1187, Paris, France
| | | | | | | |
Collapse
|
21
|
Feiler U, Albouy D, Robert B, Mattioli TA. Symmetric structural features and binding site of the primary electron donor in the reaction center of Chlorobium. Biochemistry 1995; 34:11099-105. [PMID: 7669767 DOI: 10.1021/bi00035a015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protein binding interactions of the constituent bacteriochlorophyll a molecules of the primary electron donor, P840, in isolated reaction centers from Chlorobium limicola f thiosulphatophilum and the electronic symmetry of the radical cation P840+. were determined using near-infrared Fourier transform (FT) Raman spectroscopy excited at 1064 nm. The FT Raman vibrational spectrum of P840 indicates that it is constituted of a single population of BChl a molecules which are spectrally indistinguishable. The BChl a molecules of P840 are pentacoordinated with only one axial ligand on the central Mg atom, and the pi-conjugated C2 acetyl and C9 keto carbonyls are free of hydrogen-bonding interactions. The FT Raman spectrum of P840+. exhibits a 1707 cm-1 band attributable to a BChl a C9 keto carbonyl group vibrational frequency that has upshifted 16 cm-1 upon oxidation of P840; this upshift is exactly one-half of that expected for the one-electron oxidation of monomeric BChl a in vitro. The 16 cm-1 upshift, thus, indicates that the resulting +1 charge is equally shared between two BChl a molecules. This situation is markedly different from that of the oxidized primary donor of the purple bacterial reaction center of Rhodobacter sphaeroides, (i) which exhibits a 1717 cm-1 band that has upshifted 26 cm-1, indicating an asymmetric distribution of the resulting +1 charge over the two constituent BChl a molecules, and (ii) whose H-bonding pattern with respect to the pi-conjugated carbonyl groups is asymmetric.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- U Feiler
- Section de Biophysique des Protéines et des Membranes, DBCM, CEA and URA 1290 CNRS, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
22
|
Rigby SE, Thapar R, Evans MC, Heathcote P. The electronic structure of P840+. The primary donor of the Chlorobium limicola f. sp. thiosulphatophilum photosynthetic reaction centre. FEBS Lett 1994; 350:24-8. [PMID: 8062917 DOI: 10.1016/0014-5793(94)00724-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The radical cation P840+. was studied in frozen suspensions of Chlorobium limicola f. sp. thiosulphatophilum membranes using ENDOR and Special TRIPLE spectroscopies. The spectra show that P840+. arises from a bacteriochlorophyll a 'special' pair with a highly symmetrical distribution of electron spin density between the constituent bacteriochlorophylls. Special TRIPLE spectroscopy has resolved the separate contributions of the two halves of the pair and revealed small deviations from a 1:1 electron spin density distribution. Nevertheless P840+. appears to come the closest yet to the symmetrical 'dimer' originally proposed for the structure of the primary donor radical cation (P870+.) in purple non-sulphur photosynthetic bacteria.
Collapse
Affiliation(s)
- S E Rigby
- Department of Biology, University College London, UK
| | | | | | | |
Collapse
|
23
|
|
24
|
Trost JT, Brune DC, Blankenship RE. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. PHOTOSYNTHESIS RESEARCH 1992; 32:11-22. [PMID: 24408151 DOI: 10.1007/bf00028794] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1991] [Accepted: 12/02/1991] [Indexed: 06/03/2023]
Abstract
Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in the highly conserved region that is proposed to bind iron-sulfur center FX in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%.Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n=2 titration behavior. In membranes, the behavior is intermediate between n=1 and n=2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators.These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.
Collapse
Affiliation(s)
- J T Trost
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Arizona State Univeristy, 85287-1604, Tempe, AZ, USA
| | | | | |
Collapse
|
25
|
Abstract
Membranes of the green sulfur bacterium, Chlorobium limicola f. thiosulfatophilum, catalyze the reduction of externally added isoprenoid quinones by sulfide. This activity is highly sensitive to stigmatellin and aurachins. It is also inhibited by 2-n-nonyl-4-hydroxyquinoline-N-oxide, antimycin, myxothiazol and cyanide. It is concluded that in sulfide oxidizing bacteria like Chlorobium, sulfide oxidation involves a sulfide-quinone reductase (SQR) similar to the one found in Oscilatoria limnetica [Arieli, B., Padan, E. and Shahak, Y. (1991) J. Biol. Chem. 266, 104-111].
Collapse
Affiliation(s)
- Y Shahak
- Biochemistry Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
26
|
Blankenship RE. Origin and early evolution of photosynthesis. PHOTOSYNTHESIS RESEARCH 1992; 33:91-111. [PMID: 11538390 DOI: 10.1007/bf00039173] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/1991] [Accepted: 03/12/1992] [Indexed: 05/24/2023]
Abstract
Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.
Collapse
Affiliation(s)
- R E Blankenship
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA
| |
Collapse
|
27
|
Steppuhn J, Hermans J, Nechushtai R, Herrmann GS, Herrmann RG. Nucleotide sequences of cDNA clones encoding the entire precursor polypeptide for subunit VI and of the plastome-encoded gene for subunit VII of the photosystem I reaction center from spinach. Curr Genet 1989; 16:99-108. [PMID: 2688927 DOI: 10.1007/bf00393402] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recombinant phage which encode the entire precursor polypeptide for subunit VI of the photosystem I reaction center have been selected from a lambda gt11 cDNA expression library made from polyadenylated RNA of spinach seedlings. The sequence predicts a precursor polypeptide of 144 amino acids (Mr = 15.3 kDa), a mature protein of 95 residues (Mr = 10.4 kDa) that lacks methionine, histidine and cysteine, and a transit peptide of 49 residues (Mr = 4.9 kDa). The corresponding gene(s) is (are) designated psaH. The gene for subunit VII, psaC, has been located in the small single-copy region of the spinach plastid chromosome using a synthetic oligonucleotide and a heterologous hybridization probe. It is part of a polycistronic transcription unit that is constitutively expressed and processed. Putative processing products include a monocistronic RNA for psaC. The polypeptide chain of 18 (deduced) amino acids is highly conserved and strikingly resembles bacterial-type ferredoxins. It harbours cysteine residues that appear to be involved in the ligation of the two 4Fe4S centres A and B in photosystem I. None of the two subunits appears to be membrane-spanning, and subunit VI, as subunit VII, is located at the reducing (stromal) side of the reaction center. All available information on the major subunits of photosystem I from spinach has been combined into a (revised) topographic model. Evidence that the innermost - plastome-encoded - core of photosystem I represents an old bacterial heritage in present day chloroplasts is discussed.
Collapse
Affiliation(s)
- J Steppuhn
- Botanisches Institut der Ludwig-Maximilians-Universität, München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
28
|
Hauska G. Phylloquinone in photosystem I: are quinones the secondary electron acceptors in all types of photosynthetic reaction centers? Trends Biochem Sci 1988; 13:415-6. [PMID: 3075361 DOI: 10.1016/0968-0004(88)90206-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|