1
|
|
2
|
Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment? CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Boudko D, Yu HS, Ruiz M, Hou S, Alam M. A time-lapse capillary assay to study aerotaxis in the archaeon Halobacterium salinarum. J Microbiol Methods 2003; 53:123-6. [PMID: 12609731 DOI: 10.1016/s0167-7012(02)00227-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed a method for time-lapse video photography and line scanning of optical densities for analysis of aerotactic responses of Halobacterium salinarum. This automated digital technique, along with line scan analysis of selected frames, gives a unique profile of the aerotactic migration of halobacterial cells.
Collapse
Affiliation(s)
- Dmitri Boudko
- The Whitney Laboratory, 9505 Ocean Shore Boulevard, University of Florida, St. Augustine, FL 32080, USA
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
Energy taxis is widespread in motile bacteria and in some species is the only known behavioral response. The bacteria monitor their cellular energy levels and respond to a decrease in energy by swimming to a microenvironment that reenergizes the cells. This is in contrast to classical Escherichia coli chemotaxis in which sensing of stimuli is independent of cellular metabolism. Energy taxis encompasses aerotaxis (taxis to oxygen), phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to a carbon source. All of these responses share a common signal transduction pathway. An environmental stimulus, such as oxygen concentration or light intensity, modulates the flow of reducing equivalents through the electron transport system. A transducer senses the change in electron transport, or possibly a related parameter such as proton motive force, and initiates a signal that alters the direction of swimming. The Aer and Tsr proteins in E. coli are newly recognized transducers for energy taxis. Aer is homologous to E. coli chemoreceptors but unique in having a PAS domain and a flavin-adenine dinucleotide cofactor that is postulated to interact with a component of the electron transport system. PAS domains are energy-sensing modules that are found in proteins from archaea to humans. Tsr, the serine chemoreceptor, is an independent transducer for energy taxis, but its sensory mechanism is unknown. Energy taxis has a significant ecological role in vertical stratification of microorganisms in microbial mats and water columns. It plays a central role in the behavior of magnetotactic bacteria and also appears to be important in plant-microbe interactions.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA.
| | | | | |
Collapse
|
6
|
Abstract
Bacteria use different strategies to navigate to niches where environmental factors are favourable for growth. Chemotaxis is a behavioural response mediated by specific receptors that sense the concentration of chemicals in the environment. Recently, a new type of sensor has been described in Escherichia coli that responds to changes in cellular energy (redox) levels. This sensor, Aer, guides the bacteria to environments that support maximal energy levels in the cells. A variety of stimuli, such as oxygen, alternative electron acceptors, light, redox carriers that interact with the electron transport system and metabolized carbon sources, effect changes in the cellular energy (redox) levels. These changes are detected by Aer and by the serine chemotaxis receptor Tsr and are transduced into signals that elicit appropriate behavioural responses. Diverse environmental signals from Aer and chemotaxis receptors converge and integrate at the level of the CheA histidine kinase. Energy sensing is widespread in bacteria, and it is now evident that a variety of signal transduction strategies are used for the metabolism-dependent behaviours. The occurrence of putative energy-sensing domains in proteins from cells ranging from Archaea to humans indicates the importance of this function for all living systems.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350, USA.
| | | |
Collapse
|
7
|
Brooun A, Bell J, Freitas T, Larsen RW, Alam M. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J Bacteriol 1998; 180:1642-6. [PMID: 9537358 PMCID: PMC107073 DOI: 10.1128/jb.180.7.1642-1646.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 12/30/1997] [Indexed: 02/07/2023] Open
Abstract
Signal transduction in the archaeon Halobacterium salinarum is mediated by three distinct subfamilies of transducer proteins. Here we report the complete htrVIII gene sequence and present analysis of the encoded primary structure and its functional features. HtrVIII is a 642-amino-acid protein and belongs to halobacterial transducer subfamily B. At the N terminus, the protein contains six transmembrane segments that exhibit homology to the heme-binding sites of the eukaryotic cytochrome c oxidase. The C-terminal domain has high homology with the eubacterial methyl-accepting chemotaxis protein. The HtrVIII protein mediates aerotaxis: a strain with a deletion of the htrVIII gene loses aerotaxis, while an overproducing strain exhibits stronger aerotaxis. We also demonstrate that HtrVIII is a methyl-accepting protein and demethylates during the aerotaxis response.
Collapse
Affiliation(s)
- A Brooun
- Department of Microbiology, University of Hawaii, Honolulu 96822, USA
| | | | | | | | | |
Collapse
|
8
|
Hoff WD, Jung KH, Spudich JL. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:223-58. [PMID: 9241419 DOI: 10.1146/annurev.biophys.26.1.223] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two sensory rhodopsins (SRI and SRII) mediate color-sensitive phototaxis responses in halobacteria. These seven-helix receptor proteins, structurally and functionally similar to animal visual pigments, couple retinal photoisomerization to receptor activation and are complexed with membrane-embedded transducer proteins (HtrI and HtrII) that modulate a cytoplasmic phosphorylation cascade controlling the flagellar motor. The Htr proteins resemble the chemotaxis transducers from Escherichia coli. The SR-Htr signaling complexes allow studies of the biophysical chemistry of signal generation and relay, from the photobiophysics of initial excitation of the receptors to the final output at the level of the flagellar motor switch, revealing fundamental principles of sensory transduction and more broadly the nature of dynamic interactions between membrane proteins. We review here recent advances that have led to new insights into the molecular mechanism of signaling by these membrane complexes.
Collapse
Affiliation(s)
- W D Hoff
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030-1501, USA
| | | | | |
Collapse
|
9
|
Zhulin IB, Bespalov VA, Johnson MS, Taylor BL. Oxygen taxis and proton motive force in Azospirillum brasilense. J Bacteriol 1996; 178:5199-204. [PMID: 8752338 PMCID: PMC178317 DOI: 10.1128/jb.178.17.5199-5204.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The microaerophilic nitrogen-fixing bacterium Azospirillum brasilense formed a sharply defined band in a spatial gradient of oxygen. As a result of aerotaxis, the bacteria were attracted to a specific low concentration of oxygen (3 to 5 microM). Bacteria swimming away from the aerotactic band were repelled by the higher or lower concentration of oxygen that they encountered and returned to the band. This behavior was confirmed by using temporal gradients of oxygen. The cellular energy level in A. brasilense, monitored by measuring the proton motive force, was maximal at 3 to 5 microM oxygen. The proton motive force was lower at oxygen concentrations that were higher or lower than the preferred oxygen concentration. Bacteria swimming toward the aerotactic band would experience an increase in the proton motive force, and bacteria swimming away from the band would experience a decrease in the proton motive force. It is proposed that the change in the proton motive force is the signal that regulates positive and negative aerotaxis. The preferred oxygen concentration for aerotaxis was similar to the preferred oxygen concentration for nitrogen fixation. Aerotaxis is an important adaptive behavioral response that can guide these free-living diazotrophs to the optimal niche for nitrogen fixation in the rhizosphere.
Collapse
Affiliation(s)
- I B Zhulin
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA
| | | | | | | |
Collapse
|
10
|
Grishanin RN, Bibikov SI, Altschuler IM, Kaulen AD, Kazimirchuk SB, Armitage JP, Skulachev VP. delta psi-mediated signalling in the bacteriorhodopsin-dependent photoresponse. J Bacteriol 1996; 178:3008-14. [PMID: 8655473 PMCID: PMC178045 DOI: 10.1128/jb.178.11.3008-3014.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has been shown previously that the proton-pumping activity of bacteriorhodopsin from Halobacterium salinarium can transmit an attractant signal to the bacterial flagella upon an increase in light intensity over a wide range of wavelengths. Here, we studied the effect of blue light on phototactic responses by the mutant strain Pho8l-B4, which lacks both sensory rhodopsins but has the ability to synthesize bacteriorhodopsin. Under conditions in which bacteriorhodopsin was largely accumulated as the M412 bacteriorhodopsin photocycle intermediate, halobacterial cells responded to blue light as a repellent. This response was pronounced when the membrane electric potential level was high in the presence of arginine, active oxygen consumption, or high-background long-wavelength light intensity but was inhibited by an uncoupler of oxidative phosphorylation (carbonyl cyanide 3-chlorophenylhydrazone) and was inverted in a background of low long-wavelength light intensity. The response to changes in the intensity of blue light under high background light was asymmetric, since removal of blue light did not produce an expected suppression of reversals. Addition of ammonium acetate, which is known to reduce the pH gradient changes across the membrane, did not inhibit the repellent effect of blue light, while the discharge of the membrane electric potential by tetraphenylphosphonium ions inhibited this sensory reaction. We conclude that the primary signal from bacteriorhodopsin to the sensory pathway involves changes in membrane potential.
Collapse
Affiliation(s)
- R N Grishanin
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
11
|
Bogachev AV, Murtazine RA, Shestopalov AI, Skulachev VP. Induction of the Escherichia coli cytochrome d by low delta mu H+ and by sodium ions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:304-8. [PMID: 7556165 DOI: 10.1111/j.1432-1033.1995.tb20812.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of synthesis of cytochrome d in Escherichia coli has been studied using mutants with cytochrome-d--beta-galactosidase gene fusions. It was shown that various protonophorous uncouplers, when added to the growth medium, cause induction of the cytochrome d synthesis. The cytochrome-d-inducing activity of uncouplers correlates with their ability to inhibit such a delta mu (H+)-driven function as motility of the E. coli cells. An increase in the Na+ concentration in the growth medium from 1.5 mM to 25 mM results in induction of the cytochrome d synthesis. The cytochrome-d-inducing effect of uncouplers is much more pronounced when the Na+ concentration is high than when it is low. These data are in agreement with the assumption that cytochrome d is involved in the Na+ energetics substituting for the H+ energetics when the latter appears to be inefficient. Mutations in arcA or arcB genes (but not in fnr gene) completely prevent the increase in the cytochrome d level induced by uncouplers but are without effect on that induced by Na+. It is assumed that in the control of the cytochrome d synthesis, the Arc system is involved in the delta mu H+ sensing whereas sensing of delta mu Na+ (or of the Na+ concentration) is mediated by some other receptor system.
Collapse
Affiliation(s)
- A V Bogachev
- Department of Bioenergetics, A. N. Belozersky Institute of Phisico-Chemical Biology, Moscow State University, Russia
| | | | | | | |
Collapse
|
12
|
Abstract
Natronobacterium pharaonis can react tactically to photo- and chemostimuli. It moves by rotation of a flagellar bundle which is monopolarly inserted. Under sufficient oxygen supply the photophobic response of N. pharaonis has been measured. The resulting action spectrum matches the absorption spectrum of the purified retinylidene protein psR-II. Retical synthesis could be inhibited by nicotine. Cells grown in the presence of nicotine show a strongly reduced photoresponse, which could be restored by addition of retinal. These data identify psR-II as the receptor for negative phototaxis.
Collapse
Affiliation(s)
- B Scharf
- Max-Planck-Institut für molekulaire Physiologie, Dortmund, Germany
| | | |
Collapse
|
13
|
Abstract
Rhodopsins are intrinsic membrane retinal-containing proteins composed of 7 hydrophobic alpha-helical transmembrane columns and hydrophilic sequences of various length connecting the helices and localized at N- and C-ends of the polypeptide. The chromophore (retinal) forms a Schiff base with a lysine residue in the middle part of the last alpha-helix. Absorption of a photon results in isomerization of retinal which gives rise to a conformational change in the protein moiety. Rhodopsins can be involved in two entirely different types of activities, i.e. ion pumping and photosensing. Recent observations concerning the pumping and sensory mechanisms allowed both these events to be explained in terms of one and the same unitary concept, which postulates the formation of a hydrophilic cleft in the hydrophobic part of the protein molecule as a crucial step in energy conservation and photosensing.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
14
|
Chapter 2 Bioenergetics of extreme halophiles. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Yan B, Cline SW, Doolittle WF, Spudich JL. Transformation of a bop-hop-sop-I-sop-II-Halobacterium halobium mutant to bop+: effects of bacteriorhodopsin photoactivation on cellular proton fluxes and swimming behavior. Photochem Photobiol 1992; 56:553-61. [PMID: 1333616 DOI: 10.1111/j.1751-1097.1992.tb02200.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have transformed Pho81, a Halobacterium halobium mutant strain which does not contain any of the four retinylidene proteins known in this species, with the bop gene cluster to create Pho81BR, a BR+HR-SR-I-SR-II-strain. The absorption spectrum, pigment reconstitution process, light-dark adaptation and photochemical reaction cycle of the expressed protein are indistinguishable from those of native bacteriorhodopsin (BR) in purple membrane of wild type strains. Strain Pho81BR permits for the first time characterization of effects of BR photoactivation alone on cell swimming behavior and energetics in the absence of the spectrally similar phototaxis receptor sensory rhodopsin I (SR-I) and electrogenic chloride pump halorhodopsin (HR). A non-adaptive upward shift in spontaneous swimming reversal frequency occurs following 3 s of continuous illumination of Pho81BR cells with green light (550 +/- 20 nm). This effect is abolished by low concentrations of the proton ionophore carbonylcyanide m-chlorophenylhydrazone. Although BR does not mediate phototaxis responses in energized Pho81BR cells under our culture conditions, proton pumping by BR in Pho81BR cells partially deenergized by inhibitors of respiration and adenosine triphosphate synthesis results in a small attractant response. Based on our measurements, we attribute the observed effects of BR photoactivation on swimming behavior to secondary consequences of electrogenic proton pumping on metabolic or signal transduction pathways, rather than to primary sensory signaling such as that mediated by SR-I. Proton extrusion by BR activates gated proton influx ports resulting in net proton uptake in wild-type cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Yan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| | | | | | | |
Collapse
|
16
|
Spudich JL, Bogomolni RA. Sensory rhodopsin I: receptor activation and signal relay. J Bioenerg Biomembr 1992; 24:193-200. [PMID: 1526961 DOI: 10.1007/bf00762677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent progress is summarized on the mechanism of phototransduction by sensory rhodopsin I (SR-I), a phototaxis receptor in Halobacterium halobium. Two aspects are emphasized: (i) The coupling of retinal isomerization to protein conformational changes. Retinal analogs have been used to probe chromophore-apoprotein interactions during the receptor activation process. One of the most important results is the finding of a steric trigger deriving from the interaction of residues on the protein with a methyl group near the isomerizing bond of the retinal (at carbon 13). Recent work on molecular genetic methods to further probe structure/function includes the synthesis and expression of an SR-I apoprotein gene designed for residue replacements by cassette mutagenesis, and transformation of an H. halobium mutant lacking all retinylidene proteins known in this species to SR-I+ and bacteriorhodopsin (BR)+. (ii) The relay of the SR-I signal to a post-receptor component. A carboxylmethylated protein ("MPP-I") associated with SR-I and found in the H. halobium membrane exhibits homology with the signaling domain of eubacterial chemotaxis transducers (e.g., Escherichia coli Tar, Tsr, and Trg proteins), suggesting a model based on SR-I----MPP-I signal relay.
Collapse
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| | | |
Collapse
|
17
|
Chapter 2 Chemiosmotic systems and the basic principles of cell energetics. MOLECULAR MECHANISMS IN BIOENERGETICS 1992. [DOI: 10.1016/s0167-7306(08)60170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Bibikov SI, Grishanin RN, Marwan W, Oesterhelt D, Skulachev VP. The proton pump bacteriorhodopsin is a photoreceptor for signal transduction in Halobacterium halobium. FEBS Lett 1991; 295:223-6. [PMID: 1765158 DOI: 10.1016/0014-5793(91)81423-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Halobacterium halobium swims by rotating its polarly inserted flagellar bundle. The cells are attracted by green-to-orange light which they can use for photophosphorylation but flee damaging blue or ultraviolet light. It is generally believed that this kind of 'colour vision' is achieved by the combined action of two photoreceptor proteins, sensory rhodopsins-I and -II, that switch in the light the rotational sense of the bundle and in consequence the swimming direction of a cell. By expressing the bacteriorhodopsin gene in a photoreceptor-negative background we have now demonstrated the existence of a proton-motive force sensor (protometer) and the function of bacteriorhodopsin as an additional photoreceptor covering the high intensity range. When the bacteriorhodopsin-generated proton-motive force drops caused by a sudden decrease in light intensity, the cells respond by reversing their swimming direction. This response does not occur when the proton-motive force is saturated by respiration or fermentation.
Collapse
Affiliation(s)
- S I Bibikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, USSR
| | | | | | | | | |
Collapse
|
19
|
Avetisyan AV, Dibrov PA, Semeykina AL, Skulachev VP, Sokolov MV. Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na+-motive respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/0005-2728(91)90013-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Swimming changes and chemotactic responses in Rhodobacter sphaeroides do not involve changes in the steady state membrane potential or respiratory electron transport. Arch Microbiol 1990. [DOI: 10.1007/bf00245274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|